| 研究生: |
黃冠華 Huang, Kuan-Hua |
|---|---|
| 論文名稱: |
剪力波在非飽和孔隙介質中傳遞及衰退行為之解析及數值研究 An analytical and numerical analysis of shear wave propagation and attenuation through an unsaturated porous medium |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 剪力波 、孔彈性力學 、未飽和土壤 、率退係數 |
| 外文關鍵詞: | Shear wave, Poroelasticity, Unsaturated, Attenuation coefficient |
| 相關次數: | 點閱:187 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用孔彈性力學理論方程式(poroelasticity)結合線性應力應變本構關係,可求得剪力波(S波)在兩種非混合流體土壤中之傳波速度與衰退係數。本文分成兩個部分探討,第一部分主要探討孔隙間在含空氣和水兩種不可混合流體,利用十一種不同的土壤[砂土(sand)、壤質砂土(loamy sand)、砂質壤土(sandy loam)、砂質黏壤土(sandy clay loam)、砂質黏土(sandy clay)、壤土(loam)、黏質壤土(clay loam)、坋質壤土(silt loam)、坋質黏壤土(silty clay loam)、坋質黏土(silty clay) 和黏土(clay)] 地質對剪力波的影響。第二部分探討孔隙間不同流體組合空氣-水(空氣代表非潤濕流體,水代表潤濕流體)、油-水(油代表非潤濕流體,水代表潤濕流體)及空氣-油(空氣代表非潤濕流體,油代表潤濕流體)等三種含兩相不可混合流體系統之林肯砂土及哥倫比亞細砂質壤土對剪力波的影響。兩部分之震盪頻率皆採用一般地震低頻率範圍 (50 Hz~200 Hz),且潤濕流體飽和度(S2)之範圍從0.01至0.99。
整體來說在土壤地質為砂土、壤質砂土、林肯砂土及哥倫比亞細砂質壤土的土壤地質條件下,其剪力波的波速之趨勢較為穩定,其中又以砂土在S2=0.01的情形下傳波速度為94 m/s最快。在十一種土壤地質中,除了砂土和壤質砂土之外,剪力波波速在其他九種土壤中有突然上升的現象,其主要受到流體相與固體相之間的黏滯互制參數(R11, R22)所影響,而在林肯砂土和哥倫比亞細砂質壤土在三種不同流體系統中,其波速皆隨著潤濕流體飽和度遞增而遞減,而其衰退係數則與傳波頻率比的三次方成正比。
In this study, we apply the theory of poroelasticity combined with the linear stress-strain relationship for a two-fluid system to determine the phase speed and attenuation coefficient of the shear wave in an elastic porous medium containing two immiscible fluids. This study is divided into two parts; in the first part, we discuss the effect of soil texture on the propagation and attenuation of the shear wave, where eleven different soils [sand, loamy sand, sandy loam , sandy clay loam, sandy clay, loam, clay loam, silt loam, silty clay loam, silty clay and clay] bearing the air-water mixture are examined. The second part investigates the impact of different pore fluid mixtures on the propagation and attenuation of the shear wave, including the air - water mixture (air being the non-wetting fluid, water being the wetting fluid), the oil - water mixture (oil being the non-wetting fluid, water being the wetting fluid), and the air - oil mixture (air being the non-wetting fluid, oil being the wetting fluid). In these cases, Lincoln sand and Colombian fine sandy loam are selected as illustrative examples. Five lower excitation frequencies (50–200 Hz) are carried out for numerical simulation, and the saturation degree of the wetting fluid ranges from 0.01 to 0.99.
Our numerical results show the phase speed of the shear wave behaves more stable in sand, loamy sand, Lincoln sand, and Columbia fine sandy loam, among which the sand has the greatest phase speed of 94 m / s as water saturation is 0.01. Except sand and loamy sand, the phase speed of the shear wave is observed to increase abruptly with water saturation. We find that an important cause behind this phenomenon is the viscous coupling between the fluid and solid phases, i.e. R11, R22. In addition, , it is revealed that the phase speed of the shear wave increases with an decrease in water saturation in Lincoln sand and Columbia fine sandy loam saturated by any pore fluid mixture. Lastly, a conclusion is drawn that the attenuation coefficient of the shear wave appears to be proportional to the cubic of excitation frequency.
1. Beresnev, I.A., and Johnson, PA, Elastic-wave stimulation of oil production: a review of methods and results, Geophysics, Vol. 59, no.6, pp. 1000-1017, 1994.
2. Berryman, J.G., Thigpen, L., and Chin, R.C.Y., Bulk elastic wave propagation in partially saturated porous solids, Journal of the Acoustical Society of America, Vol. 84, no. 1, pp. 360-373, 1988.
3. Biot M.A., Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-Frequency Range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 168-178, 1956a.
4. Biot M.A., Theory of propagation of elastic waves in a fluid-saturated porous solid:II. Higher Frequency Range. Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 179-191, 1956b.
5. Boris, G. and Radim, C., Shear wave dispersion and attenuation in periodic systems of alternating solid and viscous fluid layers, International Journal of Solids and Structures, Vol. 43, no. 25-26, pp. 7673-7683, 2006.
6. Brutsaert ,W., The propagation of elastic waves in unconsolidated unsaturated granular mediums, Journal of Geophysical Research, Vol. 69, no. 2, pp.243-257, 1964.
7. Chen J., Hopmans J. W. and Grismer M.E., Parameter estimation of two-fluid capillary pressure-saturation and permeability functions, Advances in Water Resources, Vol. 22, no.5, pp. 479-493, 1999.
8. Chen, C.H., Zheng X.F. and Teng T.L., Variations of shear-wave splitting study on seismic data associated with 1999 Chia-Yi earthquake, Taiwan. 兩岸強地動觀測暨地震測報研討會論文集,165-171,中國地球物理學會編印,2004。
9. Chan, C. M., On the intepretation of shear wave velocity from bender element tests, ACTA technica corviniensis- bulletin of Engineering, ISSN 2067-3809, 2012.
10. Daoying X. I., Liangkun Y. I. and Xiangyan T., Influences of phenomenological modification of the Biot theory on characteristics of S-wave, Chinese Journal of Geophysics, Vol.46, no.6, pp. 1165-1175, 2003.
11. Das, B.M., Advanced Soil Mechanics, Taylor and Francis, Philadelphia, Pa, 1997.
12. Gray, W. G., General conservation equations for multi-phase systems:4. Constitutive theory including phase, Advances in Water Resources, Vol. 6, pp.130-140, 1983.
13. Garg, S. K., and Nayfeh A. H., Compressional wave propagation in liquid and/or gas saturated elastic porous media, Journal of Applied Physics, Vol. 60, no. 9, pp. 3045-3055, 1986.
14. Girsang, C. H., A numerical investigation of the seismic response of the aggregate pier foundation system, Master Thesis. Department of Civil Engineering, University of Virginia, Blacksburg, 2001.
15. Indraratna, B. A. and Heitor, C. Rujikiatkamjorn, Effect of compaction energy on shear wave velocity of dynamically compacted silty sand soil, pp.635-640, 2012.
16. Javier C. T., Cascante G., Santos J. A. and Fonseca A. V., Measurements of shear wave velocity by resonant column test, bender element test and miniature accelerometers, Pan-Am CGS Geotechnical Conference, 2011.
17. Lo, W. C., Sposito G., and Majer E., Immiscible two-phase flows in deformable porous media, Advance Water Resources, Vol. 25, no.8-12, pp. 1105-1117, 2002.
18. Lo, W. C., Sposito, G. and Majer, E., Wave Propagation through Elastic Porous Media Containing Two Immiscible Fluids, Water Resources Research, Vol. 41, pp. W02025, 2005.
19. Lo, W. C., Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium, Advances in Water Resources, Vol. 31, pp. 1399-1410, 2008.
20. Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research., Vol. 12, no.3, pp. 513-522, 1976.
21. Quintal B., Steeb H., Frehner M., Schmalholz S. M., and Saenger E.H., Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow, Geophysics, Vol. 77, no. 3, pp. L13-L23, 2011.
22. Rawls, W. J., Ahuja J. R., and Brakensiek D. L., Estimating soil hydraulic properties from soils data. Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, pp. 329-341, 1992.
23. Roberts P. N., Laboratory observations of altered porous fluid flow behavior in Berea sandstone induced by low-frequency dynamic stress stimulation. Acoust Phys, Vol. 51, pp. S140–8, 2005.
24. Santos, J. E., Corbero, J. M. and Douglas, J., Static and dynamic behavior of a porous solid saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1428-1438, 1990a.
25. Santos, J. E., Douglas, J., Corbero, J., and Lovera, O. M., A model for wave propagation in a porous medium saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1439-1448, 1990b.
26. Santos, J. E., Claudia L., Ravazzoli, Jose M. and Carcione, A model for wave propagation in a composite solid matrix saturated by a single-phase fluid, Acoustical Society of America, Vol. 115, no.6, pp.2749-2760, 2004.
27. Stoll, R. D., Acoustic waves in saturated sediments, Physical of sound in marine sediments, edited by L. Hampton, Springer, New York, pp.19-39, 1974.
28. Tuncay, K., and Corapcioglu M. Y., Body waves in poroelastic media saturated by two immiscible fluids, Journal of Geophysical Research, Vol. 101, no. B11, pp. 25149-25159, 1996.
29. Tuncay, K., and Corapcioglu M. Y., Wave propagation in poroelastic media saturated by two fluids, Journal of Applied Mechanics, Vol. 64, no. 2, pp. 313-320, 1997.
30. Van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44, no.5, pp. 892-898, 1980.
31. Wang, H. F., Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton: Princeton University Press; 2002.
32. Whalley, W. R., Jenkins M. and Attenborough K., The velocity of shear waves in unsaturated soil, Soil & Tillage Research, Vol. 125, pp.30-37, 2012
33. Yang, S. R., Lin H. D., Kung H. S. and Liao J. Y., Shear Wave Velocity and Suction of Unsaturated Soil Using Bender Element and Filter Paper Method, Journal of GeoEngineering, Vol. 3, no. 2, pp. 67-74, 2008.
34. Zhao, H. B., Wang X. M., Chen S. M. and Lin L. L., Acoustic response characteristics of unsaturated porous media, Physics, Mechanics & Astronomy, Vol. 53, no. 8, pp. 1388-1396, 2010.
35. 黃鈺涵,「含兩相非混合、可壓縮並具有黏滯性流體之孔彈性介質於固定載重下壓密理論與數值研究」,國立成功大學水利及海洋工程學系博士論文,2012。