| 研究生: |
張雅淑 Chang, Ya-Shu |
|---|---|
| 論文名稱: |
都市容洪空間對逕流削減之評估 A Quantitative Evaluation of the Effect of Urban Retention Space on Reduction in the Peak Flow of Surface Runoff |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 都市容洪空間 、逕流分擔 、三爺溪排水集水區 |
| 外文關鍵詞: | urban retention space, runoff distribution, San-Yei Chi drainage catchment area |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著氣候變遷的影響,極端降雨情況漸趨頻繁,然而都會地區都市化程度越來越高,開發造成不透水面積增加,降下的雨水迅速排入河道,若還有外水過高的問題,更加提高了河道洪水量暴漲的風險,但是都市地區雨水下水道及河道兩旁多已開發完成,過往利用河道拓寬等工程治水方法將逐漸難以實行,也因此近年導入「逕流分擔、出流管制」治水方法來因應環境改變,其中逕流分擔係針對特定河川流域或區域排水集水區進行治理,在公共設施區位導入保水措施,例如:公園、綠地、學校等設施用地,因此本論文參考研究報告及規劃手冊之建議,推估公園及校園之分擔量體,探討在不同的都市容洪空間方案下不同重現期降雨事件對三爺溪排水集水區逕流削減的成效評估,以作為未來改善三爺溪排水集水區推動逕流分擔之參考。
由分析結果可得,在三爺溪排水集水區內使用校園作為容洪空間,從全區淹水面積減緩、深度減緩及特定保全對象淹水歷程減緩均有最佳效果。而各方案(使用公園或校園做為容洪空間)均於重現期5年至重現期10年之降雨就會達到最大效果。而對於洪峰的遲滯只對重現期5年之降雨有效果。
In this thesis, we do not only use the regulations and strategies related to flood management as a reference by which the volume of urban retention space is estimated, but also we prepare several scenarios to evaluate the effect of urban retention space on reduction in the peak flow of surface runoff in the San-Yei Chi drainage catchment area under different return period rainfall conditions.
The results showed that using all campuses to retain flooding is the most effective method by which the flooding area and flooding depth can be reduced, as well as the protected objects in the San-Yei Chi drainage catchment area can be safeguarded. All cases were found to be most effective during the rainfall of the 5-year to 10-year return period. In addition, the reduction in peak of runoff was effective under the 5-year return-period rainfall condition.
1. Ahiablame et al. (2013). Effectiveness of low impact development practice in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of Environmental Management, 119, 151-161.
2. Ahiablame, L., & Shakya, R. (2016). Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81-91.
3. Bedan, E. S., & Clausen, J. C. (2009). Stormwater Runoff Quality and Quantity From Traditional and Low Impact Development Watersheds 1. Jawra journal of the american water resources association, 45(4), 998-1008.
4. Bliss et al. (2009). Storm water runoff mitigation using a green roof. Environmental Engineering Science, 26(2), 407-418.
5. Bosley, I., & Kern, E. (2008). Hydrologic evaluation of low impact development using a continuous, spatially-distributed model. Virginia Tech.
6. Botzen et al. (2013). Individual preferences for reducing flood risk to near zero through elevation. Mitigation and Adaptation Strategies for Global Change, 18(2), 229-244.
7. Carr, R. W. (2001). Micromanagement of Stormwater for Wet Weather Control.Proceedings of the Water Environment Federation, 2001(2), 593-606.
8. Christopher Pyke et al. (2011). Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landscape and Urban Planning, 103(2), 166-173.
9. Davis, A. P. (2007). Field performance of bioretention: Water quality. Environmental Engineering Science, 24(8), 1048-1064.
10. Davis et al. (2009). Bioretention technology: Overview of current practice and future needs. Journal of Environmental Engineering, 135(3), 109-117.
11. Davis et al. (2012). Hydraulic performance of grass swales for managing highway runoff. Water research, 46(20), 6775-6786.
12. Davis et al. (2012). Hydraulic performance of grass swales for managing highway runoff. Water research, 46(20), 6775-6786.
13. DeBusk, K., & Wynn, T. (2011). Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering, 137(9), 800-808.
14. Dietz, M.E., & Clausen, J.C. (2008). Stormwater runoff and export changes with development in a traditional and low impact subdivision. Journal of Environmental Management, 87(4), 560-566.
15. Fu et al. (2018). Cross-Analysis of Land and Runoff Variations in Response to Urbanization on Basin, Watershed, and City Scales with/without Green Infrastructures. Water, 10(2), 106.
16. Geronimo et al. (2014). Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter. Water Science and Technology, 69(12), 2460-2467.
17. Gilroy, Kristin L., & McCuen, Richard H. (2009). Spatio-temporal effects of low impact development practices. Journal of Hydrology, 367, 228-236.
18. Guo, J. C. (2011). Off-stream detention design for storm-water management. Journal of Irrigation and Drainage Engineering, 138(4), 371-376.
19. Hilten et al. (2008). Modeling stormwater runoff from green roofs with HYDRUS-1D. Journal of Hydrology, 358(3-4), 288-293.
20. Hsieh, C. h., & Davis, A. P. (2005). Evaluation and optimization of bioretention media for treatment of urban storm water runoff. Journal of Environmental Engineering, 131(11), 1521-1531.
21. Jennings et al. (2012). Rain barrel–urban garden stormwater management performance. Journal of Environmental Engineering, 139(5), 757-765.
22. Loucks, E. D., & Morgan, M. C. (1995). Evaluation of the Wilmette runoff control program. Integrated Water Resources Planning for the 21 st Century, 21-24.
23. Lu et al. (2012). Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Separation and Purification Technology, 84, 112-119.
24. Lucas, W. C. (2010). Modeling impervious area disconnection with SWMM.
25. Ma et al. (2014). A closed urban scenic river system using stormwater treated with LID-BMP technology in a revitalized historical district in China. Ecological engineering, 71, 448-457.
26. Nanía et al. (2014). Hydrologic-hydraulic model for simulating dual drainage and flooding in urban areas: application to a catchment in the metropolitan area of Chicago. Journal of Hydrologic Engineering, 20(5),04014071-1-13.
27. Peng, S.H., & Lu, S.C. (2013). FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in southeastern Taiwan during Typhoon Morakot. Journal of Mountain Science, 10(2), 207-218.
28. Qin et al. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of environmental management, 129, 577-585.
29. Rushton, B. T. (2001). Low-Impact Parking Lot Design Reduces Runoff and Pollutant Loads. Journal of Water Resources Planning and Management, 127(3), 172-179.
30. Tota‐Maharaj, K., & Scholz, M. (2010). Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environmental progress & sustainable energy, 29(3), 358-369.
31. Trieu et al. (2001). Combined sewer overflow rooftop type analysis and rain barrel demonstration project. In: District of Columbia Department of Environmental Programs.
32. Vaes, G., & Berlamont, J. (2001). The effect of rainwater storage tanks on design storms. Urban Water, 3(4) , 303-307.
33. VanWoert et al. (2005). Green roof stormwater retention. Journal of environmental quality, 34(3), 1036-1044.
34. Villarreal, E. L., & Dixon, A. (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9), 1174-1184.
35. 內政部建築研究所,(2011),社區及建築基地減洪技術與防洪強化措施之研究。
36. 內政部建築研究所,(2012),氣候變遷下都市地區滯洪空間之規劃。
37. 內政部建築研究所,(2014),學校設置滯洪設施示範計畫。
38. 內政部建築研究所,(2016),建築技術規則雨水貯集滯洪設施減洪效益評估與法令探討研究。
39. 內政部建築研究所,(2019),應用都市洪水即時預警模式進行滯蓄洪設施整合減災調適技術研究成果報告。
40. 內政部營建署,(2015),水環境低衝擊開發設施操作手冊編製與案例評估計畫。
41. 內政部營建署,(2015),水環境低衝擊開發設施操作手冊。
42. 史健軍,高家偉,(2007),蘭陽地區住宅小型雨水回收系統雨水貯留槽容積探討。蘭陽學報(6),8-17。
43. 李天浩,(2015),氣候變遷下的都市水災防治策略(上)、(下),風險社會與政策研究中心。
44. 東京都都市整備局,(2016),公共施設における一時貯留施設等の設置に係る技術指針。
45. 高思,(2014),低衝擊開發於降低都市淹水之效率,國立交通大學土木工程系所碩士論文。
46. 陳柏碩,(2016),滯洪池設置對鄰近地區發展的探討—以寶業里滯洪池為例,高苑科技大學土木工程研究所碩士論文。
47. 游仲延,(2019),利用低衝擊開發設施設置提升社區韌性之研究-以台南市東區虎尾寮為例,國立成功大學水利及海洋工程學系碩士論文。
48. 黃悅瑩,(2015),都市雨水貯集滯洪設施容量差別應用效益分析,國立台灣大學土木工程學系碩士論文。
49. 黃筱庭,(2017),都市地區利用學校用地多目標使用做為滯洪空間之效益評估—以臺南市安南區為例,國立成功大學都市計劃學系碩士論文。
50. 新北市政府水利局,(2012),透水保水設施規畫參考手冊。
51. 經濟部水利署水利規劃試驗所,(2019),逕流分擔與出流管制相關技術規範之訂定(2/2)附錄二逕流分擔技術手冊(草案)。
52. 經濟部水利署,(2019),「流域綜合治理計畫」逕流分擔出流管制規劃報告-以安南區為例。
53. 經濟部水利署,(2010),三爺溪排水及西機場排水治理計畫。
54. 經濟部水利署水利規劃試驗所,(2013),都市防洪空間規劃與管理之研究。
55. 經濟部水利署水利規劃試驗所,(2013),土地利用型態變遷對逕流影響之評估研究(2/2)。
56. 經濟部水利署水利規劃試驗所,(2014),高雄市淹水潛勢圖第二次更新計畫。
57. 經濟部水利署水利規劃試驗所,(2015),臺南市淹水潛勢圖(第二次更新)。
58. 蔡孟儒,(2014),都市貯流設施之區位與容量評估 高雄市後勁溪流域為實驗地區,國立成功大學都市計劃學系碩士論文。
59. 謝東隆,(2019),都會易淹水地區設置滯洪池效益之研究-以台北市文山區憲兵營滯洪池為例,國立臺北科技大學土木工程系土木與防災碩士論文。
60. 鍾婷羽,(2017),設置低衝擊開發設施對都市淹水影響之研究,國立交通大學土木工程系所碩士論文。
61. 羅偉峻,(2013),考量減洪效果下中和地區最佳雨水貯集系統設計,國立台灣大學土木工程學系碩士論文。
校內:2030-06-30公開