簡易檢索 / 詳目顯示

研究生: 江嘉羚
Chiang, Chia-Ling
論文名稱: 應用於顯示器裝置之視覺無失真圖像壓縮法
Visually Lossless Image Compression Method for Display Devices
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 圖像壓縮人眼視覺系統方向性預測
外文關鍵詞: Image Compression, Human Visual System, Directional Prediction
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對顯示器裝置提出一個新穎的視覺無失真圖像壓縮技術。為了達到近乎無失真的圖像品質,採用較不易出現預測誤差的方向性預測器,以額外傳送預測模式來提高預測精準度。另外,演算法探討了人眼視覺系統(Human Visual System)中人眼對於不同圖像區域內錯誤感知的差異,根據區域內的複雜度將編碼單位分類為平滑、邊緣及無規則三種區域。在不同分類區塊使用不同的量化位階以達到視覺無失真及高壓縮率的目標。最後根據差值的機率分布,設計一改良式的一元編碼來進行更有效率的壓縮。另一方面,論文所提出的演算法架構只需使用兩條列記憶體,適用於行動裝置有限的線路面積,且低複雜度的計算更易於硬體實現。由實驗結果可得知,各類型的測試圖像以我們所提出的方法進行壓縮,在人眼無法察覺失真的壓縮品質下,皆可達到3倍以上的壓縮率。

    This paper proposes a new visually lossless image compression technique for display devices. The algorithm explores the differences in error perceptibility of human visual system (HVS) for different image areas. Coding units are classified into smooth, edge and random areas based on local complexity and prediction errors. In order to achieve the objectives of imperceptible quality loss and high compression ratio, the classified blocks are quantized by different levels. The proposed architecture is designed to use only the memory of two line buffer, so it is hardware-friendly and could be easily implemented in many display devices. Experimental results show that the proposed method is visually lossless in all categories of tested images with the compression ratio 3.

    中文摘要 I Abstract II 誌謝 III 目 錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 研究動機 1 1-2 研究貢獻 2 1-3 論文架構 3 第二章 研究背景 5 2-1 失真圖像壓縮技術 5 2-1-1 JPEG壓縮標準 5 2-1-2 JPEG 2000 壓縮標準 8 2-1-3 WebP圖像壓縮技術 10 2-2 無失真圖像壓縮技術 11 2-2-1 JPEG-LS壓縮標準 11 2-2-2 CALIC壓縮演算法 14 2-3 H.264畫框內預測 (Intra Prediction) 17 2-3-1 畫框內預測模式 (Intra Prediction Mode) 17 2-3-2 畫框內預測模式選擇 (Intra Prediction Mode Decision) 20 2-4 人眼視覺系統 (Human Visually System) 22 2-5 影像品質及壓縮效果評估 24 2-5-1 影像評估品質 24 2-5-2 壓縮效果評估 24 第三章 相關文獻 25 3-1 顯示器驅動晶片影像壓縮技術 25 3-1-1 LCD驅動晶片之具frame緩衝器嵌入式影像壓縮 25 3-1-2 應用於TFT驅動晶片之優化SRAM面積設計與實現 26 3-2 近乎無失真及視覺無失真圖像壓縮方法 27 3-2-1 無失真和近乎無失真影像壓縮編碼方法 27 3-2-2 一維區段之近乎無失真影像壓縮 29 3-2-3 利用非固定量化步階及少量記憶體之視覺無失真壓縮 31 第四章 應用於顯示器裝置之視覺無失真圖像壓縮方法 33 4-1 系統架構與流程概述 34 4-2 編碼單位 35 4-3 方向性預測器 (Directional Predictor) 35 4-3-1 方向性預測模式 36 4-3-2 最佳模式選擇 37 4-4 人眼視覺分類(Human Visual Classification) 37 4-5 適應性量化 (Adaptive Quantization) 40 4-6 改良式一元編碼 (Modified Unary Coding) 41 4-6-1 編碼方法選擇 41 4-6-2 固定長度編碼(fixed-length coding) 42 4-6-3 區塊編碼(block coding) 43 4-7 位元串結構(Bit-stream structure) 43 第五章 實驗結果分析與比較 45 5-1 近乎無失真與視覺無失真的差異 45 5-2 少量記憶體視覺無失真壓縮技術之比較 48 第六章 結論與未來展望 55 6-1 結論 55 6-2 未來展望 55 參考文獻 57 附錄A 59 附錄B 63

    [1] Pennebaker, W. B., and J. L. Mitchell, “JPEG Still Image Data Compression Standard,” 1993. (2006): 409-424.
    [2] Skodras, Athanassios, Charilaos Christopoulos, and Touradj Ebrahimi. “The JPEG 2000 still image compression standard." Signal Processing Magazine, ” IEEE 18.5 (2001): 36-58.
    [3] Antonini, Marc, et al. “Image coding using wavelet transform,” Image Processing, IEEE Transactions on 1.2 (1992): 205-220.
    [4] Calderbank, A. R., et al. “Wavelet transforms that map integers to integers, ” Applied and computational harmonic analysis 5.3 (1998): 332-369.
    [5] WebP homepage, http://code.google.com/speed/webp/
    [6] “JPEG-LS; Lossless and near-lossless coding of continuous tone still image,” ISO/IEC JTC 1/SC 29/WG 1 FCD 14495, July 1997.
    [7] Marcelo J. Weinberger, Gadiel Seroussi and Guillermo Sapzro, “LOCO-I: a low complexity context-based, lossless image compression algorithm, ” Data Compression Conference , pp.140-149, Apr. 1996.
    [8] Xiaolin Wu and Nasir Memon,“Context-based, adaptive, lossless image coding, ” Communications, IEEE Transactions on 45.4 (1997): 437-444.
    [9] Thomas Wiegand, et al. “Overview of the H. 264/AVC video coding standard,” Circuits and Systems for Video Technology, IEEE Transactions on 13.7 (2003): 560-576.
    [10] M. Tagliasacchi, A. Trapanese, S. Tubaro, J. Ascenso, C. Brites and F. Pereira, “Intra mode decision based on spatio-temporal cues in pixel domain Wyner-Ziv video coding, ” in Proc. ICASSP, Toulouse, France, May 2006, pp. 57-60.
    [11] Zhihang Wang, Wen Gao, Debin Zhao and Qingming Huang, “A Fast Intra Mode Decision Algorithm for AVS to H.264 transcoding, ” International Conference on Multimedia and Expo(ICME), 2006.
    [12] McCollough, Celeste. “Color adaptation of edge-detectors in the human visual system,” Science 149.3688 (1965): 1115-1116.
    [13] Star Sung and Jacques Baudia, ”An LCD Driver with on-chip frame buffer and 3 times image compression ,” SPIE Digital Library, 2008.
    [14] Hui-gang Wang, Qing-ming Yi and Yu-jing Li, ”Design and Implementation of Optimizing SRAM Area in TFT Driver IC,”ICEET, 2012.
    [15] Chia-Chi Liu, ”Lossless and Near Lossless Image Compression and Coding Methods ,” 2002.
    [16] i-Yao Lin, ”A 1-D Segment Coder for Near-Lossless Image Compression ,” July 2008.
    [17] Du ̃ng T. Vo ̃, Surapong Lertrattanapanich and Yeong-Taeg Kim, ”Low line memory visually lossless compression for color image using non-uniform quantizers”, Consumer Electronics, IEEE Transactions on 57.1 (2011): 187-195.

    下載圖示 校內:2015-08-31公開
    校外:2015-08-31公開
    QR CODE