簡易檢索 / 詳目顯示

研究生: 許振嘉
Hsu, Chen-Chia
論文名稱: 選擇性蝕刻於T型閘極高電子移動率電晶體之研製
Study of T-Gate HEMTs by Selective Etching
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 81
中文關鍵詞: 高速元件選擇性蝕刻ITO/金T型閘極
外文關鍵詞: HEMT, Selective etching, ITO/Au, T-gate
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們以ITO/Au的閘極結構,配合鹽酸的選擇性蝕刻,成功地縮短了有效閘極長度,因而提升了元件特性。使用ITO/Au的選擇性蝕刻製程是利用此兩種材料有極高的蝕刻選擇比,且鹽酸對砷化鎵的蝕刻速率極低,此技術亦可應用於氮化鎵系列的高電子移動率電晶體上。
    當元件閘極製作完成後,利用鹽酸蝕刻ITO,因Au幾乎不受到酸的影響,導致Au下方的ITO長度有效地縮短。
    本論文探討研製砷化鎵鋁/砷化銦鎵高電子移動率電晶體中以傳統的Au作為閘極,ITO/Au閘極,以及ITO/Au在選擇性蝕刻後形成T型閘極的元件特性。在室溫下,元件的直流與微波特性:飽和電流密度IDSS0為249(264/294) mA/mm,最大轉導值gm,max為155(149/172) mS/mm,臨限電壓Vth為1.8(1.85/1.8) V,電流增益截止頻率fT為16.08(16.1/21.4) GHz,最大震盪頻率fmax為27.06(26.1/30.1) GHz,附加功率效率P.A.E.為37.8(46) %,最小雜訊指數NFmin為0.81(1.24/1.18) dB。

    In this work, we succeed in reducing effective gate length by utilizing HCl selective etching ITO/Au gate, and hence improve devices performance. Because of the high selectivity of HCl to ITO and Au and the low etching rate to GaAs, we choose these materials for the selective etching process. Besides, this process is adapted to GaN-based HEMTs.
    We utilize HCl to etch ITO after we accomplish the gate process; Au will not be affected by hydrochloric acid, and that resulting in the reduced ITO length beneath Au.
    In comparison, the performance of studied AlGaAs/InGaAs HEMTs with conventional Au gate, ITO/Au gate, and the T-gate etched by HCl have been investigated. And here are the DC and RF characteristics:the saturation current density IDSS0 249(264/294) mA/mm, the maximum extrinsic transconductance gm,max 155(149/172) mS/mm, the threshold voltage Vth 1.8(1.85/1.8) V, the unity current gain cut-off frequency fT 16.08(16.1/21.4) GHz, the maximum oscillation frequency fmax 27.06(26.1/30.1) GHz, the power added efficiency P.A.E. 37.8(46) %, and the minimum noise figure NFmin 0.81(1.24/1.18) dB at 300K.

    Abstract (Chinese) Ⅰ Abstract (English) Ⅲ Acknowledgement Ⅴ Contents Ⅵ Figure Captions Ⅷ Chapter 1 Introduction 1 Chapter 2 Material Growth and Fundamental 3 2-1 Pseudomorphic HEMTs 3 2-2 HEMT Layer Design 4 2-2-1 Cap Layer 4 2-2-2 Etching Stop Layer 5 2-2-3 Schottky Layer 5 2-2-4 δ-doped Carrier Supply Layer 5 2-2-5 Spacer Layer 6 2-2-6 Pseudomorphic InGaAs Channel Layer 6 2-2-7 Buffer Layer 7 2-3 Two-Dimensional Electron Gas 8 Chapter 3 Device Structure and Fabrication Processes 10 3-1 Device Structure 10 3-2 Device Fabrication Process 10 3-2-1 Sample Orienting 11 3-2-2 Mesa Isolation 11 3-2-3 Source and Drain Metallization 12 3-2-4 Gate Schottky Contact 13 3-2-5 T-Gate Fabrication 14 Chapter 4 Results and Discussion 15 4-1 Hall Measurement 15 4-2 DC Characteristics 16 4-2-1 Current-Voltage Characteristics 16 4-2-2 Extrinsic Transconductance Characteristics 17 4-2-3 Breakdown Voltage 19 4-2-4 Output Conductance 20 4-2-5 Thicknesses of ITO Film 21 4-3 Temperature-Dependent DC Characteristics 22 4-3-1 Current-Voltage Characteristics 22 4-3-2 Extrinsic Transconductance Characteristics 22 4-3-3 Breakdown Voltage 24 4-4 Microwave Characteristics 24 4-5 Power Characteristics 26 4-6 Noise Characteristics 27 4-7 Application for GaN-based HEMT 29 Chapter 5 Conclusion 30 References 31

    [1] C. Y. Chang, and Francis Kai, “GaAs High-Speed Devices,” John Wiely and Sons, New York, 1994.
    [2] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “Ner self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
    [3] W. S. Sul, S. D. Kim, H. M. Park, and J. K. Rhee, “Electrical characteristics of the 0.1 μm gate length pseudomorphic high electron mobility transistors with low dielectric constant benzo-cyclo-butene passivations,” Jpn. J. Appl. Phys., vol. 42, p. 7189, 2003
    [4] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett., vol. 33, p.665, 1978.
    [5] M. Miyashita, N. Yoshida, Y. Kojima, T. Kitano, N. Higashisaka, J. Nakagawa, T. Takagi, and M. Otsubo, “An AlGaAs/InGaAs pseudomorphic HEMT modulator drive IC with low power dissipation for 10-Gb/s optical transmission systems,” Microwave Theory and Tech., vol. 45, p. 1058, 1997.
    [6] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, p. 804, 1995.
    [7] G. M. Metze, J. F. Bass, T. T. Lee, A. B. Cornfield, J. L. Singer, H. L. Hung, H. C. Huang, and K. P. Pande, “High-gain, V-band, low-noise MMIC amplifiers using pseudomorphic MODFETs,” IEEE Electron Device Lett., vol. 11, p. 24, 1990.
    [8] M. Kao, P. M. Smith, P. Ho, P. Chao, K. H. G. Duh, A. A. Jabra, and J. M. Ballingall, “Very high power added efficiency and low noise 0.15 μm gate length pseudomorphic HEMT’s,” IEEE Electron Device Lett., vol. 10, p. 580, 1989.
    [9] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S. N. Kang, K. Y. Cheng, and I. Adesida, “A 10 GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, vol. 39, p. 2676, 1992.
    [10] C. S. Wu, C. K. Pao, W. Yau, H. Kanber, M. Hu, S. X. Bar, A. Kurdoghlian, Z. Bardai, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomorphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Microwave Theory and Tech., vol. 43, p. 257, 1995.
    [11] S. E. Rosenbaum, B. K. Kormanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompson, L. P. B. Katehi, and G. M. Rebeiz, “155 and 213 GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol. 43, p. 927, 1995.
    [12] T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, “Bottom-gate zinc oxide thin film transistors (ZnO TFTs) for AM-LCDs,” IEEE Trans. Electron Devices, vol. 55, pp. 3136-3142, 2008.
    [13] D. H. Cho, S. Yang, C. Byun, M. K. Ryu, S. H. Park, C. S. Hwang, S. M. Yoon, and H. Y. Chu, “Transparent oxide thin film transistors composed of Al and Sn doped zinc indium oxide,” IEEE Electron Device Lett., vol. 30, pp. 48-50, 2009.
    [14] Y. Pei, K. J. Vampola, Z. Chen, R. Chu, S. P. Denbaars, and U. K. Mishra, “AlGaN/GaN HEMT with a transparent gate electrode,” IEEE Electron Device Lett., vol. 30, pp. 439-441, 2009.
    [15] Y. N. Lai, W. C. Hsu, C. S. Lee, C. W. Wang, S. W. Yeh, C. S. Ho, and W. F. Lai, “Improved white organic light –emitting diodes with modified dual-emission-layer designs,” Jpn. J. Appl. Phys., vol. 157, pp. J25-J28, 2010.
    [16] H. C. Chiu, C. K. Lin, C. W. Lin, and M. Y. Chen, “Enhanced optical responsivity of InAlAs/InGaAs metamorphic high mobility electron mobility using indium tin oxide transparent gate technology,” Appl. Phys. Lett., vol. 93, p. 043506, 2008.
    [17] H. Xiao, “Introduction to semiconductor manufacturing technology,” Prentice Hall, 2001.
    [18] A. Salehi, and A. Nikfarjam, “Room temperature carbon monoxide sensor using ITO/n-GaAs Schottky contact,” Sens. Actuat. B., vol. 101, pp. 394-400, 2004.
    [19] S. M. Sze, “Physics of semiconductor devices, 2nd ed.,” Wiley, New York, 1981.
    [20] J. H. Kim, H. S. Yoon, J. H. Lee, W. J. Chang, J. Y. Shim, K. H. Lee, and J. I. Song, “Low frequency noise characteristics of metamorphic InAlAs/InGaAs double heterostructure pseudomorphic high electron mobility transistors grown on a GaAs substrate,” Solid state electronic., vol. 46, p. 69, 2002.
    [21] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron. Devices, vol. 39, p. 2007, 1992.
    [22] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, “Strain relaxation of compositionally graded InGaAs buffer layers for modulation-doped InGaAs/InAlAs heterostructures,“ Appl. Phys. Lett., vol. 60, p. 1129, 1992.
    [23] D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal application,” IEEE Electron Device Lett., vol. 12, p. 436, 1991.
    [24] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HEMT’s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, p. 456, 1994.
    [25] B. Vinter, “Subband and charge control in a two-dimensional electron gas field-effect transistor,” Appl. Phys. Lett., vol. 44, p. 307, 1984.
    [26] S. Karmalkar, R. R. Krishna Rao, “A simple yet comprehensive unified physical model of th 2D electron gas in delta-doped and uniformly doped high electron mobility transistors,“ IEEE Trans. Electron Devices, vol. 47, p. 11, 2000.
    [27] Y. Ando and T. Itoh, “Accurate modeling for parasitic source resistance in two-dimensional electron gas field-effect transistors.” IEEE Trans. Electron Devices, vol. 36, p. 1036, 1989.
    [28] D. L. Pulfrey, G. Parish, D. Wee, and B. D. Nener, “Surface-layer damage and responsivity in sputtered-ITO/p-GaN Schottky-barrier photodiodes,” Solid State Electronics, vol. 49, pp. 1969-1973, 2005.
    [29] K. Matsuda, T. Kawasaki, K. Nakata, T. Igarashi, and S. Yaegassi, “Low leakage current ITO Schottky electrodes for AlGaN/GaN HEMTs,” IEICE Trans. on electronics, vol. E91C, pp. 1015-1019, 2008.
    [30] D. A. Neamen, “Semiconductor physics and devices: basic principles 3rd ed.,” 2003.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE