| 研究生: |
胡栢榕 Hu, Po-Jung |
|---|---|
| 論文名稱: |
以銻為活化劑之異質結構場效電晶體 Study of Surfactant-Like Sb in Heterojunction Field Effect Transistor |
| 指導教授: |
許渭州
Hsu, W. C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 銻 、高電子移動率電晶體 |
| 外文關鍵詞: | Sb, HEMT |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們提出了二種改善熱穩定性的方法,第一,我們成功研製了以InGaAsN(Sb)為通道的高電子移動率電晶體,Sb常常被應用在成長 InGaAsN/GaAs 量子井時通入,可當成一種類似活化劑的作用,其優點是可以抑制其三維(3-D)的表面成長,使其維持在二維(2-D)的表面成長,使得InGaAsN 成長時所產生的Dislocation 大為減少,材料成長品質大為提升。
實驗結果顯示,高電子移動率電晶體的結構中使用新式的InGaAsN(Sb)當通道,可以有效的改善元件的通道結構,並且加強載子的侷限能力。因此,InGaAsN(Sb) HEMT和 InGaAsN HEMT相比,擁有較佳的直流特性與熱穩定度。
在室溫下,由於在通道加入Sb,其最大異質轉導值從74.1 mS/mm增加為109 mS/mm。電流驅動能力IDSS原本是70 mA/mm,也因為使用InGaAsN(Sb)當通道而提高至87 mA/mm。而當溫度從300K變化至480K時,InGaAsN HEMT的臨界電壓變化率是-1.07 mV/K,而InGaAsN(Sb) HEMT的變化率降低至-0.807 mV/K。
第二,我們在InGaAs(Sb) HEMT中,運用doped channel 的方式,期望能夠改善它的熱穩定性,由於doped channel 隨著溫度上升受通道中載子濃度上升的影響較小,因此可以使元件較不受溫度的影響。
實驗結果顯示,雖然doped channel InGaAs(Sb) HEMT由於doped channel造成mobility下降的關係,使得最大異質轉導值及電流驅動能力IDSS變小,但是因為doped channel 通道中的載子分佈較為均勻,使得通道會被緩慢地空乏,所以讓GVS從1.2 V增加至1.63 V。此外,還獲得極佳的熱穩定性,當溫度從300K變化至480K時,InGaAs(Sb) HEMT的臨界電壓變化率是-1.54 mV/K,而doped channel InGaAs(Sb) HEMT的變化率降低至-0.70 mV/K。
We suggest two ways to improve thermal stability in this study. First, a high electron-mobility transistor (HEMT) by using a dilute antimony InGaAsN(Sb) channel has been successfully investigated. The advantages by incorporating the surfactant-like Sb atoms during growth of InGaAsN/GaAs quantum well (QW) consist of the suppression of the three-dimensional growth and the improved crystalline quality.
The experimental results of the studied device by using a dilute antimony InGaAsN(Sb) channel can improve the channel layer quality and enhance carrier confinement. Thus, compared with InGaAsN HEMT, InGaAsN(Sb) HEMT has better dc characteristics and highly thermal stability.
The values of the gm, max and the drain-source current density (IDSS), are 109 (66.4) mS/mm and 87 (70) mA/mm at room temperature for the studied HEMT with (without) adding the Sb atoms into the InGaAsN channel, respectively. Significant improvement in gm and IDSS values has been successfully achieved by employing the dilute antimony channel. The thermal threshold coefficient (Vth/T) is -0.807 (-1.07) mV/K for the InGaAsN(Sb) HEMT and the conventional InGaAsN HEMT at 300 (450)K, respectively.
Second, we apply doped channel structure to the InGaAs(Sb) HEMT in order to future improve thermal stability. When temperature rises, the device performance is affected slightly by increasing carrier concentration in the channel. Thus, the degradation of device performance at high temperature is insignificant.
Although the studied device can not improve the peak extrinsic transconductance and drain-to-source saturation current density due to mobility decreasing, the doped channel InGaAs(Sb) HFET demonstrates the great gate-voltage swing (GVS) value is 1.63 V compared with that is 1.2 V of InGaAs(Sb) HEMT. The better GVS characteristic of doped channel InGaAs(Sb) HFET is owing to the carriers have been uniformly distributed in the channel and the channel has been depleted slowly. Besides, the present doped channel device also achieves superior stable thermal characteristics. The thermal threshold coefficient (Vth/T) is -0.70 (-1.54) mV/K for the InGaAs(Sb) doped channel HFET and the InGaAs(Sb) HEMT at 300 (450)K, respectively.
[1]R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojuncyion superlattices,” Appl. Phys. Lett. , vol. 33, p. 665, 1978.
[2]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modelation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, p. 804, 1995.
[3]W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys,” Phys. Rev. Lett. , vol. 82, p. 1221, 1999.
[4]K. Kim and A. Zunger, ”Spatial Correlations in GaInAsN Alloys and their Effects on Band-Gap Enhancement and Electron Localization,” Phys. Rev. Lett. , vol. 86, p. 2609, 2001.
[5]K. D. Choquette, J. F. Klem, A. J. Fischer, O. Blum, A. A. Allerman, I. J. Fritz, S. R. Kurtz, W. G. Breiland, R. Sieg, K. M. Geib, J. W. Scott, and R. L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm,” Electron. Lett., vol. 36, p. 1388, 2000.
[6]R. S. Hsiao, J. S. Wang, K. F. Lin, L. Wei, H. Y. Liu, C. Y. Liang, C. M. Lai, A. R. Kovsh, N. A. Maleev, J. Y Chi and J. F. Chen, “Single Mode 1.3 µm InGaAsN/GaAs Quantum Well Vertical Cavity Surface Emitting Lasers Grown by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys., vol. 43, p. L1555, 2004.
[7]X. Yang, M. J. Jurkovic, J. B. Heroux and W. I. Wang, “Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers,” Appl. Phys. Lett., vol. 75, p. 178, 1999.
[8]J. S. Wang, A. R. Kovsh, R. S. Hsiao, L. P. Chen, J. F. Chen, T. S. Lay and J. Y. Chi, “High nitrogen content InGaAsN/GaAs single quantum well for 1.55 μm applications grown by molecular beam epitaxy,” J. Cryst. Growth, vol. 262, p. 84, 2004.
[9]A. R. Kovsh, J. S. wang, L. Wei, R. S. Shiao, J. Y. Chi, B. V. Volovik, A. F. Tsatsul’nikov and V. M. Ustinov, “Molecular beam epitaxy growth of GaAsN layers with high luminescence efficiency,” J. Vac. Sci. & Technol. B, vol. 20, p. 1158, 2002.
[10]R. S. Hsiao, J. S. Wang, K. F. Lin, L. Wei, H. Y. Liu, C. Y. Liang, C. M. Lai, A. R. Kovsh, N. A. Maleev, J. Y Chi and J. F. Chen, “Single Mode 1.3 µm InGaAsN/GaAs Quantum Well Vertical Cavity Surface Emitting Lasers Grown by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys., vol. 43, p. L1555, 2004.
[11]H. Shimizu, K. Kumada, S. Uchiyama and A. Kasukawa, “1.3-μm InAsP modulation-doped MQW lasers,” Electron. Lett. , vol. 36, p. 1379, 2000.
[12]X. Yang, J. B. He´ roux, L. F. Mei and W. I. Wang, “InGaAsNSbÕGaAs quantum wells for 1.55 mm lasers grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 78, p. 4068, 2001.
[13]W. Ha, V. Gambin, M. Wistey, S. Bank, H. Yuen, S. Kim and J.S. Harris, “ Long-wavelength GaInNAs(Sb) lasers on GaAs,” Electron. Lett. , vol. 38, p. 277, 2002.
[14]B. Vinter, “Subband and Charge Control in a Two-Dimensional Electron Gas Field-Effect Transistor,” Appl. Phys. Lett., vol. 44, p. 307, 1984.
[15]Karmalkar and G. Ramesh, “A Simple Yet Comprehensive Unified Physical Model of the 2D Electron Gas in Delta-Doped and Uniformly Doped High Electron Mobility Transistors,” IEEE Trans. Electron Devices, vol. 47, p. 11, 2000.
[16]Y. Ando and T. Itoh, “Accurate Modeling for Parasitic Source Resistance in Two-Dimensional Electron Gas Field-Effect Transistors,” IEEE Trans. Electron Devices, vol. 36, p. 1036, 1989.
[17]M. Feng, D.R. Scherrer, P.J. Apostolakis, and J.W. Kruse, “Temperature Dependent Study of the Microwave Performance of 0.25um Gate GaAs MESFETs and GaAs Pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol. 43, p. 852, 1996.
[18]R. E. Anholt and S. E. Swirhum, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuits”, IEEE Trans. Electron Devices, vol. 39, p. 2029, 1992.
[19]S. Niki, C. L. Lin, W. S. C. Chang and H. H. Wieder, “Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells,” Appl. Phys. Lett., vol. 55, p. 1339, 1989.
[20]H. Carrère, X. Marie, J. Barrau and T. Amand,” Comparison of the optical gain of InGaAsN quantum-well lasers with GaAs or GaAsP barriers,” Appl. Phys. Lett., vol. 86, p.07116-1, 2005.
[21]A. Belache, A. Vanoverschelde, G. Salmer and M. Wolny, “Experimental analysis of HEMT behavior under low-temperature conditions,” IEEE Trans. Electron Devices, vol. 38, p. 3, 1991.
[22]M. Feng, D. R. Scherrer, P. J. Apostolakis and J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25 μm gate GaAs MESFETs and GaAs pseudomorphic HEMTs,” IEEE Trans. Electron Devices vol. 43, p. 852, 1996.
[23]J. C. Liou and K. M. Lau, “Temperature dependence and persistent conductivity of GaAs MESFET’s with superlattice Buffers,” IEEE Trans. Electron Devices, vol. 35, p. 14, 1988.
[24]W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices vol. 40, p. 1630, 1993.
[25]S. J. Yu, W. C. Hsu, Y. J. Li and Y. J. Chen, “Improved Step-Graded-Channel Heterostructure Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 43, p. 5942, 2004.
[26]P. H. Lai, H. M. Chuang, S. F. Tsai, C. I. Kao, H. R. Chen, C. Y. Chen and W. C. Liu, “Characteristics of a new camel-gate field effect transistor (CAMFET) with a composite channel structure,” Semicond. Sci. Technol. , vol. 19, p. 912, 2004.
[27]Y. J. Li, W. C. Hsu and S. Y. Wang, “Temperature-dependent characteristics of an Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic double heterojunction modulation doped field-effect transistor with a GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21 , p. 760, 2003.
[28]P. H. Lai, S.I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng and W. C. Liu, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. on device and materials reliability, vol. 6, p. 52, 2006.
[29]S. J. Yu, W. C. Hsu, Y. J. Li, Y. J. Chen, “Improved Step-Graded-Channel Heterostructure Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 43, p. 5942, 2004.
[30]P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng and W. C. Liu, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/ GaAs HFET,” IEEE Trans. on Device and Materials Reliability, vol. 6, p. 52, 2006.
[31]S. R. Bank, W. Ha, V. Gambin, M. A. Wistey, H. B. Yuen, L. L. Goddard, S. M. Kim and J. S. Harris, “1.5mm GaInNAs(Sb) lasers grown on GaAs by MBE.” J. Cryst. Growth, vol. 251, p. 367, 2003.
[32]K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen and T. W. Chia, “Novel Dilute Antimony Channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE electron device lett, vol. 28, p. 91, 2007.
[33]A. Hasse, K. Volz, A. K. Schaper, J. Koch, F. Ho¨hnsdorf and W. Stolz, “TEM investigations of (GaIn)(NAs)/GaAs multi-quantum wells grown by MOVPE”, Cryst. Res. Technol., vol. 35, p. 787, 2000.
[34]K. H. Su, W. C. Hsu, P. J. Hu and Y. J. Chen, “An Improved Symmetrically-Graded Doped-Channel Heterostructure Field-Effect Transistor,” Journal of the Korean Physical Society, vol. 50, p. 1878, 2007.
[35]H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu and W. C. Liu, “Investigation of a New InGaP–InGaAs Pseudomorphic Double Doped-Channel Heterostructure Field-Effect Transistor (PDDCHFET),” IEEE trans. electron devices., vol. 50, p. 1717, 2003.
[36]P. G. Young, S. A. Alterovitz, R. A. Mena and E. D. Smith, “RF Properties of Epitaxial Lift-Off HEMT Devices” IEEE trans. electron devices., vol. 40, p. 1905, 1993.
[37]K. Kiziloglu, H. Ming, D. S. Harvey, R. D. Widman, C. E. Hooper, P. B. Janke, J. J. Brown, L. D. Nguyen, D. P. Docter and S. R. Burkhart, “High-performance AlGaAs/InGaAs/GaAs PHEMTs for K and Ka-band applications,” Microwave Symposium Digest, IEEE MTT-S International, vol. 2, p. 13, 1999.
[38]M. Miyashita, N. Yoshida, Y. Kojima, T. Kitano, N. Higashisaka, J. Nakagawa, T. Takagi and M. Otsubo, “An AlGaAs/InGaAs pseudomorphic HEMT modulator driver IC with low power dissipation for 10-Gb/s optical transmission systems”, Microwave Theory and Techniques, vol. 45, p. 1058 ,1997.
[39]P. Cova, R. Menozzi, D. Lacey, Y. Baeyens and F. Fantini, “High performance electron devices for microwave and optoelectronic applications,” EDMO., IEEE 1995 Workshop, 1995.
[40]R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove and F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMTs,” IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997.