| 研究生: |
許弘莒 Hsu, Hung-Chu |
|---|---|
| 論文名稱: |
斜坡底床上前進波的非線性解析 Nonlinear Analysis of Progressive Waves on Sloping Bottoms |
| 指導教授: |
陳陽益
Chen, Yang-Yih 黃煌煇 Hwung, Hwung-Hweng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 非線性波 、斜坡底床 |
| 外文關鍵詞: | sloping bottom, nonlinear wave |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於二度空間,解析斜坡坡度α之底床上前進的週期性規則表面重力波問題,本文乃基於陳(2003Ⅰ、Ⅱ)之攝動展開至εmαn階的非線性解析理論,ε表示波浪非線性階次量的參數(an ordering parameter)如Pierson(1962)所示,α表示底床坡度,擴展求解至εmαn(m+n=4)之波動流場的解析解,以闡述波動流場特性分別受到波浪尖銳度及底床坡度與其互制之影響,且引入試驗結果印證之,同時並說明此解析模式較前人研究更具完整適足性。在此非線性解析模式中,所考慮的波動流場除需滿足基本控制式,及其在固定不透水的斜坡底床(α≠0)與自由表面處的邊界條件外,同時忽略反射波而維持波浪週期不變下,對斜坡底床為界的波動水域內之各斷面處,於波浪週期平均下之質量通量的平衡,亦即波浪週期平均下各斷面處之定常性一併考慮處理。藉此,則本文之非線性解析模式,將逐次地列出至εmαn階的所有控制式,以展現波浪非線性量與底床坡度對平緩斜坡上之波浪變化特性之描述。
對於所欲解析的斜坡底床上前進的表面波動,其波動流場的物理量均以波浪非線性量參數ε與底床坡度α的雙冪級數形式表示之,並逐階求解至εmαεmαn(m+n=4)階解,其中至εiαj(i+j=3)的非線性解析解完全與陳(2003Ⅱ)所得者相同;而對本文所進一步求得至εmαn(m+n=4)階之解,在ε1α3階解中,得出本模式中尚未被定出的振幅影響係數e3;於ε2α2階解中,除包含時空變動項外,同時又含有往昔未被呈現出的受坡度所影響之波降量,且在此量的加入下與實驗值比較更為吻合,此顯示了往昔尚未被論及的波降與底床坡度之量化的密切關連;於ε3α1階解中,有坡度衍生出的時空變動項;在ε4α0階解中,則包含受波浪非線性量所影響之波降量與時空變動項及回流速度項。本文所得的非線性解於深海處不受底床的影響,與在斜坡坡度α=0時退化成等水深前進波至ε4α0之解,都能獲得具體的印証。
為更明確地描述流體質點的運動特性,本文再進一步將Eulerian 系統所得的非線性解轉換至 Lagrangian系統至ε2α1階的非線性解,並求得流體質點運動的參數化方程式。藉此參數化方程式,沿著波浪前進的方向,從深海至淺水受深海波浪尖銳度與底床坡度之影響,波浪形狀的變形及其整個流場的時空演變均被解析;尤其在接近碎波點,波形產生捲入(plunging)或溢出(spilling)之整個時空連續變形亦能清楚的顯示其詳細演變過程。本文由所得之Lagrangian 系統所分析出的相關波動特性,藉由繪製一系列的關係圖,可明確地瞭解這些物理量與深海波浪尖銳度、水深及底床坡度的關係。再者,由波形的斜率非對稱性參數的探討,可知其與底床坡度及深海波浪尖銳度有關。當相對水深越淺時,波形的斜率非對稱性變化越大。另外,底床坡度與深海波浪尖銳度對質量傳輸及波降的影響,在攝動展開下會出現在O(ε2α2)階次量,此乃前人之解析解中尚未展現出的特性。而本文所得之解在退化至有限水深時則與Longuet-Higgins(1953)解析非旋轉性前進波的質量傳輸速度結果一致。更值得一提的是,經由逐階求解非線性解所得之波降解η (即於碎波前之波浪週期平均水位下降),可知 η 為深海波浪尖銳度λ0a0與底床坡度α的函數。而本文考慮底床坡度修正量之計算結果較Longuet -Higgins & Stewart(1962)之結果為佳,且與Saville(1961)之試驗值較為吻合。因此,對於碎波前之週期平均水位下降除與深海波浪尖銳度有關外,底床坡度之因素亦需加以考量,尤其在較陡之斜坡底床上,底床坡度影響項之效應也愈強。最後由本解析模式適用範圍之討論,結果顯示依流速勢函數之各階修正量的比值,取其不同的限制條件,則解析模式的適用範圍亦有所不同。
For wave propagating on sloping bottoms, this study extends the model of Chen(2003Ⅰ、Ⅱ) to analyze the influences of the wave steepness and the bottom slope. Based on the principle of wave motion with nonlinear free-surface boundary conditions, rigid bottom boundary condition and the conservation of time-averaged mass flux, the nonlinear solution for the velocity potential is derived as a two-parameter function of the nonlinear ordering parameter ε and the bottom slope α perturbed to the fourth order (εmαn,m+n=4) in the Eulerian coordinate system.
The solutions up to εiαj(i+j=3) order are exactly the same as those of Chen (2003Ⅱ). For the higher order solutions obtained by this study, it is found that bottom slope α is related to the changes of wave elevations and wave profile in the ε1α3 order solution . The effect of bottom appears in the quantity of α3∫x x0e3dx´, which has not yet been obtained by Chen (2003Ⅱ). The velocity potential to ε2α2 order includes a second harmonic and a time–independent potential, all affected by the second-order bottom slope effect. The corresponding free surface elevation contains a new mean sea-level set-down α2η2,2,0 term due to the slope effect and a second harmonic η2,2,2. The velocity potential to the ε3α1 order includes a third harmonic term that depends on the bottom slope. Finally the velocity potential to ε4α0 order includes an oscillatory term, which is the form of potential of the Stokes fourth harmonic, and the time-independent potential. To check the validity of the nonlinear analytical solution, it is shown analytically that, in the limit of deep water or constant depth, the nonlinear solution approaches the well known classical Stokes fourth-order solution of progressive waves.
The transformation between Eulerian and Lagrangian coordinates is used to calculate the water particle motion up to second order. Up to now, it is known that the Eulerian solution of Stokes wave up to the third order cannot be transformed into the corresponding Lagrangian solution. It still need to make further research. The Lagrangian velocity in this paper is calculated only to the order of ε2α1. The displacement of the water particle X and Y to the ε2α1-order approximation can thus be written by integration. These enable the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water and the deformation of a wave profile, particularly, the successive process of the wave plunging or spilling on a beach near the breaking point. From theoretical analysis, it is apparent that the asymmetry parameter is the function of the bottom slope and the square of incident wave steepnessλ0a0. The absolute value of the asymmetry parameter |s| increases with decreasing water depth for a given slope. In addition, for a given wave steepness, |s| also increases as the bottom slope α increases. From theoretical analysis, the mass transport velocity on the sloping bottom is proportional to the bottom slope and the incident wave steepness. In the limiting case where the water depth is constant and finite, the Stokes’ drift is reduced to that derived by Longuet-Higgins (1953). This study also obtained the wave-induced set-down in the shoaling zone, correct to the ε2α2 order, is a function of both the square of the bottom slope and the square of the incident wave steepness λ0a0. Comparing the theoretical set-down with the experimental data of Saville (1961), the present theory shows good agreement with the experimental results while the L-H/S theory tends to underestimate the set-down. Thus, it can be concluded that this averaged surface depression depends on the slope of the bed, and this dependence increases significantly for steep slopes. The present theoretical formulae developed will be applicable for cases of arbitrary bottom slopes. By examining the ratio of the high-order term to the low-order term, which must be less than 1 in order for the series for ψ, the region of validity of the present study can be obtained.
1.Battjes, J. A. (1974), “Surf similarity,” Proc. 14th Coast. Eng. Conf., pp. 460-480.
2.Biesel, F. (1952), “Study of wave propagation in water of gradually varying depth,” U.S National Bureau of Standards, Gravity Waves, NBS Circular 521, pp. 243-253.
3.Carrier, G. F. (1966), “Gravity waves on water of variable depth,” J. Fluid Mech. 24, pp. 641-659.
4.Carrier, G. F. and Greenspan, H. P. (1958), “Water waves of finite amplitude on a sloping beach,” J. Fluid Mech. 4, pp. 97-109.
5.Chamberlain, P. G. and Porter, D. (1995), “The Modified Mild-Slope Equation,” J. Fluid Mech. 291, pp. 393-407.
6.Chen, Y. Y. and Hwung, H. H. (1982), “Water waves Propagating on beaches of arbitrary slope,” Proc. 18th Conf. on Coastal Eng., ASCE, pp. 811-822.
7.Chen, Y. Y., Yang, B. D., Tang, L. W., Ou, S. H. and Hsu, J. R. C. (2004), “Transformation of progressive waves propagating obliquely on a gentle slope,” Journal of Waterways, Port, Coastal and Ocean Engineering, ASCE 119(1), pp. 162-169.
8.Chu, V. H. and Mei, C. C. (1970), “On slowly-varying Stokes waves,” J. Fluid Mech., 41, pp. 873-887.
9.Chung, Y. K., Lim, J. S. and Chung, J. H. (1995), “Variations of amplitude, wavelength and phase velocity of plane progressing waves over uniformly sloping beaches,” Ocean Engineering, 22(6), pp. 527-543.
10.Cokelet, E. D. (1977), “Steep gravity waves in water of arbitrary uniform depth,” Phil. Trans. R. Soc. Land. A. 286, pp. 183-230.
11.Eckart, C. (1952), “The propagation of gravity waves from deep to shallow water,” U.S. National Bureau of Standards, Gravity Waves, NBS Circular 521, pp.165-173.
12.Ehrenmeark, U. T. (1991), “On viscous wave motion over a plane beach,” SIAM J. Appl. Math. 51, pp. 1-19.
13.Ehrenmeark, U. T. (1994), “Set-down computations over an arbitrary inclined plane bed,” J. Mar. Res. 52, pp. 983-998
14.Ehrenmeark, U. T. (1998), “Oblique wave incident on a plane beach : the classical problem revisited,” J. Fluid Mech. 368, pp. 291-319.
15.Fenton, J. D. (1985), “A fifth-order Stokes theory for steady waves,” J. Waterway, Port, Coastal and Ocean Engineering, A.S.C.E., Vol. Ⅲ, NO. 2, pp. 216-234.
16.Gaillard, D. D. (1904), Wave action in relation to engineering structure, U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 13.
17.Galvin, C. J. (1968), “Breaker type classification on three laboratory beaches,” J. Geophys. Res., 73(12) , pp. 3651-3659.
18.Gerstner, F. (1802), Theorie der wellen, Abhandlungen der Koniglichen Bohmischen Gesellschaft der Wissenschaften, Prague.
19.Goda, Y. (1975), “Irregular wave deformation in the surf zone,” Coastal Engineering in Japan, Vol. 18, pp. 1.13-1.26.
20.Goda, Y. (1998), “Breaking wave heights on horizontal bed affected by approach slope,” Coastal Engineering Journal, 40(4), pp. 307-326.
21.Hanson, E. T. (1926), “The theory of ship waves,” Proc. Roy. Soc. Lond. A., Vol. 111, pp. 491-529.
22.Hu, D. M. (1985), “Analytical solution of linear wave potential function on sloping bottom,” Acta Oceanological Sinica, pp. 539-533.
23.Hudspeth, R. T. and Sulisz, W. (1991), “Stokes drift in two-dimensional wave flumes,” J. Fluid Mech, 230, pp. 209-229.
24.Keller, J. B. (1958), “Surface waves on water of non-uniform depth,” J. Fluid Mech. 4, pp. 607-614.
25.Kennedy, A. B., Chen, Q., Kirby, J. T., Dalrymple, R. A. (1999), “Boussineaq modeling of wave transformation, breaking, and run-up, I,1D,” Journal of Waterways, Port, Coastal and Ocean Engineering, ASCE 126(1), pp. 39-47.
26.Lauwerier, H. A. (1959), “A note on the problem of sloping beach,” Indag, Math. 21, pp. 229-240.
27.Le Mehaute and L. Webb (1964), “Periodic gravity wave over a gentle slope at a third order of approximation,” Proc. 9th Conf. On coastal Eng. ASCE, pp. 23-40.
28.Lewy, H. (1946), “Water waves on sloping beaches,” Bulletin of the American Math. Soc. 52, pp. 737-775.
29.Lin, S. C., Chen, Y. Y. and Chang, S. G. (1987), “Numerical Verification On a 90o interior crest angle in Limiting Gravity Waves,” J.C.I.E. Vol. 10, No.5, pp. 539-542.
30.Liu, P. L. F. and Dingemans, M. W. (1989), “Derivation of the third-order evolution equations for weakly nonlinear water waves propagating over uneven bottoms,” Wave Motion 11 , pp.41-64.
31.Longuet-Higgins, M. S. (1953), “Mass transport in water waves,” Phil. Trans. R. Soc. Lond. A245 , pp. 535-581.
32.Longuet-Higgins, M. S. (1962), “Radiation stress and mass transport in gravity waves,” with application to ‘surf beat’, J. Fluid Mech., 13, pp. 481-504.
33.Longuet-Higgins, M. S. and Stewart, R. W. (1963), “A note on wave set-up,” J. Mar. Res. 21 , pp. 4-10.
34.Lowell, S. C. (1949), “The propagation of waves in shallow water,” Comm. Pure Appl. Math. 2, pp. 275-291.
35.Lozano, C. and Liu, P. L. F. (1980), “Refraction–diffraction model for linear surface water waves,” Journal of Fluid Mechanics, Vol. 101(4), pp. 705-720.
36.Mason, M. A. (1941), A study of progressive oscillatory waves in water, U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 1.
37.Mei, C. C. (1983), “The Applied Dynamics of Ocean Surface Waves,” 420-426, John Wiely.
38.Miche, A. (1944), “Mouvements ondulatoires de la mer en profondeur constante ou decroissante,” Annales des ponts et chaussees, 14, pp. 27-58, 131-164, 270-292, 369-406.
39.Nayfeh, A. H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons Inc., New York.
40.Nwogu, O. (1993), “Alternative form of Bousssinesq equations for nearshore wave propagation,” Journal of Waterways, Port, Coastal and Ocean Engineering, ASCE 119(6), pp. 618-638.
41.Peters, A. S. (1952), “Water waves over sloping beaches and the solution of a mixing boundary value problem for in a sector,” Commun. Pure Appl. Math. 9, pp. 443-493.
42.Piedra-Cueva, I. (1995), “Drift velocity of Spatially decaying waves in a two-layer viscous system,” J. Fluid Mech, 299, pp. 217-239.
43.Pierson, W. J., Jr. (1962), “Perturbation analysis of the Navier-Stokes equations in Lagrangian form with selected linear solution,” J. Geophys. Res. 67(8), pp. 3181-3160.
44.Porter, D. and Staziker, D. J. (1995), “Extensions of the Mild-Slope Equation,” J. Fluid Mech., 300, pp. 367-382.
45.Rakine, W. J. M. (1863), “On the exact form of waves near the surface of deep water,” Philosophical Transactions of the Royal Society of London, pp. 127-138.
46.Rattanapitikon, W. and Shibayama, T. (2000), “Verification and modification of breaker height formulas,” Coastal Engineering Journal, 42(4), pp. 389-406.
47.Rattanapitikon, W., Vivattanasirisak, T. and Shibayama, T. (2003), “A proposal of new breaker heights formula,” Coastal Engineering Journal, 45(1), pp. 29-48.
48.Rienecker, M. M. and Fenton, J. D. (1981), “A Fourier approximation method for steep water waves,” J. Fluid Mech. 140, pp. 119-137.
49.Roseau, M. (1952), “Contribution a' la theorie des ondes liquides de gravite en profondeur variable,” Publications Scientifiques et Techniques du Ministere de l' Air, No. 275. Pairs.
50.Roseau, M. (1958), “Short waves parallel to the shore over sloping beach. Commun,” Pure Appl. Math. 9, pp. 443-493.
51.Saville,T. (1961), “Experimental determination of wave set-up,” Proc.2nd Tech. Conf. Hurricanes, 242.
52.Schwartz, L. W., “Computer extension and analytic continuation of Stokes expansion for gravity waves,” J. Fluid Mech. 62, pp. 553-578.
53.Skjelbreia, L. and Hendrickson, J. A. (1961), “Fifth order gravity wave theory,” Proc. 7th conf. Coastal Eng, pp. 184-196.
54.Stoker, J. J. (1947), “Surface waves in water of variable depth,” Quart Appl. Math. 5, pp. 1-54.
55.Stoker, J. J. (1968), Water Waves, Institute of Mathematical Sciences, New York University, New York.
56.Stokes, G. G. (1847), “On the theory of oscillatory waves,” Trans. Camb. Phil. Soc. 8, pp. 441-473.
57.Sverdrup, H. U. and Munk, W. H. (1944), Breaker and Surf, U.S. Navy Department, Hydrographic Office. Publication No.234.
58.Tanimoto, K., Nakamura, S. and Zhao, Q. (1996), “Evaluation of wave motions and radiation stress on steep slope,” (in Japanese) Proc. 43th Japan Coast. Eng. Conf., pp. 26-31.
59.Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R. (1995), “A fully nonlinear Boussinesq model for surface waves,” J. Fluid Mech. 294, pp. 71-92
60.Wiegel,R.L. (1968), “Oceanographical Engineering,” pp. 37-40, Prentice-Hall.
61.Williams, J. M. (1981), “Limiting gravity waves in water of finite depth,” Phil. Trans Roy. Soc. Lond. A. 302, pp. 139-188.
62.Zhao, Q., Nakamura, S., and Tanimoto, K. (1996), “Distribution of particle velocities due to waves on very deep slope bottom,” IAHR-APD, Langkawi, Malaysia.
63.陳陽益、邱永芳、莊文傑(1989),“前進重力波與駐波之關連”,第十一屆海洋工程研討會論文集,273頁-298頁。
64.陳陽益(1990),“等深水中兩規則前進重力波列交會之解析”,港灣技術第五期,1頁-45頁。
65.陳陽益、湯麟武(1992),“平緩坡度底床上前進的表面波”,第十四屆海洋工程研討會論文集,1頁-22頁。
66.陳陽益(1994a),“等深水中非旋轉性的自由表面前進重力波之Lagrangian方式的攝動解析”,第十六屆海洋工程研討會論文集,A1-A29。
67.陳陽益(1994b),“等深水中非旋轉性的自由表面重力駐波之Lagrangian方式的攝動解析”,第十六屆海洋工程研討會論文集,A30-A59。
68.陳陽益(1995),“Lagrangian 與 Eulerian 解下前進重力波與重力駐波的動力特性”,第十七屆海洋工程研討會論文集,19頁-36頁。
69.陳陽益(1996),“非旋轉性前進波的 Eulerian 與 Lagrangian 解間的轉換性”,第十八屆海洋工程研討會論文集,1頁-13頁。
70.陳陽益(1997),“平緩坡度底床上前進的表面波”,第十九屆海洋工程研討會論文集,112頁-121頁。
71.陳陽益、張富東(1999),“平緩坡度底床上前進波的試驗研究”,第二十一屆海洋工程研討會論文集,165頁-174頁。
72.陳陽益、黃啟暘(2000),“Lagrangian方式下平緩底床上之前進波”,第二十二屆海洋工程研討會論文集,79-88頁。
73.陳陽益(2003 I),“非陡坡底床上前進波的非線性解析:I. 系統化攝動展開模式”,第二十五屆海洋工程研討會論文集,39頁-48頁。
74.陳陽益(2003II),“非陡坡底床上前進波的非線性解析:II. 至 階的解析解及印證”,第二十五屆海洋工程研討會論文集,49頁-58頁。
75.陳陽益、許弘莒(2005) ,“非旋轉性前進波的五階Eulerian與Lagrangian解間的轉換”,撰寫中。
76.黃正欣、林西川(1986),“通用模式波浪理論之應用—波浪之變形及平均水位之變化”,第三屆水利工程研討會論文集,343頁-362頁。
77.黃煌煇、張正、林呈(1987),“斜坡上波浪非對稱性之研究”,第九屆海洋工程研討會論文集,133頁-147頁。
78.楊炳達、陳陽益、湯麟武、歐善惠(2000),“前進波列斜向傳遞於平緩坡度底床之研究”,第二十二屆海洋工程研討會論文集,1頁-8頁。
79.曾文哲、陳陽益 (2004),“碎波衝量之研究”,第二十六屆海洋工程研討會論文集,329頁-337頁。