簡易檢索 / 詳目顯示

研究生: 鄭詠元
Jeng, Yung-Yuan
論文名稱: 傳送端控制方法及主動式整流器之無線傳能系統
A Wireless Power Transfer System with Transmitter-Side Control Method and Active Rectifier
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 78
中文關鍵詞: 無線傳能無線充電效率功率控制
外文關鍵詞: wireless power transfer, wireless charger, power transfer efficiency, Qi, power control
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線傳能技術在近十年來獲得許多重大的發展。許多與無線傳能相關的工業聯盟興起,像是Wireless Power Consortium (WPC) 及 AirFuel Alliance。傳統的無線傳能系統在資訊通訊時並不會進行功率控制。換句話說,傳送器每隔很長一段時間獲得接收器透過耦合線圈回傳負載資訊,反應速度慢。因此,本論文提出傳送端功率控制方法,使傳送端每隔很短的時間偵測一次負載資訊並據此調整傳送功率,反應速度快,故在全負載電流範圍內,VRECT (接收端整流器的輸出電壓)變動範圍小,可降低整流器輸出穩壓電容值CRECT,減少接收器體積。另一個在無線傳能系統中常被提及的議題是能量傳輸效率。本論文提出一個使用主動式整流器架構的無線傳能系統用以提升系統的能量傳輸效率及電壓轉換比例。
    本論文整流器晶片使用TSMC 0.35 μm 2P4M 3.3V/5V 混合訊號互補式金氧半導體製程製作,整體晶片面積為1.266 x 1.204 mm2,本晶片操作頻率為100 kHz,接收端輸出電壓為3.3V。從量測結果可看出其能量轉換效率約為91%,比大多數現有文獻的設計還要高。

    Wireless power transfer (WPT) technique has gained great development in the past decades. Industry consortia such as the Wireless Power Consortium (WPC) and AirFuel Alliance have been established. A conventional WPT system doesn’t execute power adjustment during data communication. In other words, the transmitter (TX) obtains the load information sent by receiver (RX) for a long period, and thus the response speed to load changing is slow. Therefore, this thesis proposes a TX-side power control method, where TX receives the load information once for a short period and control the transmitted power, so the response to load changing is fast. As a result, the fluctuations of VRECT (rectifier in the RX) is small in the whole range of load current. Thus, the output capacitance CRECT of the rectifier can be reduced, resulting in a decrease of RX’s volume. Another important issue discussing in WPT system is power transfer efficiency. This thesis also proposes a WPT system with active rectifier to achieve high power conversion efficiency (PCE) and voltage conversion ratio (VCR).
    The proposed rectifier integrated circuit (IC) is fabricated with TSMC 0.35μm 2P4M 3.3V/5V Mixed-Signal CMOS process. The total chip area is 1.266 x 1.204 mm2. The operating frequency is 100kHz and the output voltage of receiver is 3.3V. Measurement results show that the power conversion efficiency is 91%, which is higher compared to most of the state-of-the-arts.

    摘要 I Abstract II Acknowledgements III Table of Contents IV List of Tables VII List of Figures VIII Chapter1 Introduction 1 1.1 Motivation 3 1.2 Organization 5 Chapter2 Fundamentals of Wireless Power Transfer 6 2.1 Definitions 6 2.2 Typical Architecture of WPT System 8 2.3 Mutual Inductance and Coupling factor k 8 2.3.1 Perfect Coupling (k = 1) 10 2.3.2 Tight Coupling (0.5 ≤ k < 1) 10 2.3.3 Loose Coupling (0 ≤ k ≤ 0.5) 11 2.4 Inductive Coupling and Magnetic Resonance 11 2.5 Operating Frequency and Communication Protocol 13 2.6 Power Conversion Efficiency and Voltage Conversion Ratio 14 2.7 Introduction to Conventional Qi Wireless Power 15 2.7.1 Power Transmitter Design 15 2.7.2 Power Receiver Design 16 2.7.3 Modulation/Demodulation Feedback Control 17 2.7.4 Power Transfer Control Loop 19 Chapter3 System Level Design 21 3.1 Transmitter-Side Power Control Method 22 3.1.1 Output Capacitance Reduction 23 3.1.2 Mathematical Analysis 24 3.2 Active Rectifier with Switched-Offset Biasing 26 3.2.1 From Passive Rectifier to Active Rectifier 26 3.2.2 Problems of Active Rectifiers 31 3.2.3 Delay Time of Active Diode 32 3.2.4 Analysis of Reverse Current Power Loss 35 Chapter4 Circuit Level Design 37 4.1 Transmitter Architecture 38 4.1.1 Full Bridge Inverter 38 4.1.2 Peak Detector 39 4.1.3 Digital Compensator 41 4.2 Receiver Architecture 42 4.2.1 Design consideration of RX Efficiency 43 4.2.2 Area Pre-Estimation of Power MOSFETs 44 4.2.3 Peaking Current Source 45 4.2.4 Switched-Offset Comparator 47 4.2.5 Pre-Simulation Result 50 4.2.5.1 Simulation condition 50 4.2.5.2 Performance Summary 53 Chapter5 Layout and Measurement Result 54 5.1 Transmitter 54 5.1.1 Measurement Setup and PCB Layout 54 5.1.2 Bill of Materials List 58 5.2 Receiver IC 59 5.2.1 Chip Layout 59 5.2.2 IC Package 61 5.2.3 Measurement Setup and PCB Layout 62 5.2.4 Bill of Materials List 65 5.2.5 Post-Simulation Result 66 5.2.5.1 Simulation condition 66 5.2.5.2 Performance Summary 70 5.2.5.3 Comparison Table 70 5.2.6 Measurement Setup and Result 71 Chapter6 Conclusion and Future Work 74 6.1 Conclusion 74 6.2 Future Work 74 Reference 76

    [1] P. S. Riehl et al., “Wireless power systems for mobile devices supporting inductive and resonant operating modes,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3, pp. 780–790, Mar. 2015.
    [2] " An End to Cable Clutter: Mercedes-Benz to Introduce Wireless Charging,"
    [Online]. Available: http://www.daimler.com/dccom/0-5-7153-1-1630096-1-0-0-0-0-0-16694-0-0-0-0-0-0-0-0.html/
    [3] "Qi - Wireless Power Consortium official website,"
    [Online]. Available: http://www.wirelesspowerconsortium.com/
    [4] "AirFuel official website,"
    [Online]. Available: http://www.airfuel.org/
    [5] K. Tomita, R. Shinoda, T. Kuroda, and H. Ishikuro, “1W 3.3V-to-16.3V boosting wireless power transfer circuits with vector summing power controller,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2011, pp. 177-180.
    [6] M. Kiani, U. M. Jow, and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579-591, Dec. 2011.
    [7] B. Lenaerts and R. Puers, “An inductive power link for a wireless endoscope,” Biosensors & Bioelectronics, pp. 1390-1395, 2007..
    [8] A. K. RamRakhyani, S. Mirabbasi, and M. Chiao, “Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 48-63, Feb. 2011.
    [9] Y. H. Lam, W. H. Ki and C. Y. Tsui, “Integrated low-loss CMOS active rectifier for wirelessly powered devices,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 12, pp. 1378-1382, Dec. 2006.
    [10] P. R. Gray, P. Hurst, S. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. New York, NY, USA: Wiley, 2001.
    [11] Y. Lu and W.-H. Ki, “A 13.56 MHz CMOS active rectifier with switched offset and compensated biasing for biomedical wireless power transfer systems,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 334–344, Jun. 2014.
    [12] M. Kiani, B. Lee, P. Yeon, and M. Ghovanloo, “A Q-modulation technique for efficient inductive power transmission,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2839–2848, Dec. 2015.
    [13] K.-G. Moh et al., “A fully integrated 6W wireless power receiver operating at 6.78MHz with magnetic resonance coupling,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 230–231.
    [14] H. G. Park et al., “A design of a wireless power receiving unit with a high-efficiency 6.78-MHz active rectifier using shared DLLs for magnetic-resonant A4 WP applications,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4484–4498, Jun. 2016.
    [15] L. Cheng, W.-H. Ki, T. T. Wong, T. S. Yim, and C. Y. Tsui, “A 6.78MHz 6W wireless power receiver with a 3-level 1×/1/2×/0× reconfigurable resonant regulating rectifier,” in IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 376–377.
    [16] M. Kiani, B. Lee, P. Yeon, and M. Ghovanloo, “A Q-modulation technique for efficient inductive power transmission,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2839–2848, Dec. 2015.
    [17] J.-H. Choi, S.-K. Yeo, S. Park, J.-S. Lee, and G.-H. Cho, “Resonant regulating rectifiers (3R) operating for 6.78 MHz resonant wireless power transfer (RWPT),” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 2989–3001, Dec. 2013.
    [18] X. Li, C.-Y. Tsui, and W.-H. Ki, “A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 978–989, Apr. 2015.
    [19] H. K. Cha, W. T. Park, and M. Je, “A CMOS rectifier with a crosscoupled latched comparator for wireless power transfer in biomedical applications,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 59, no. 7, pp. 409–413, Jul. 2012.
    [20] H.-M. Lee, H. Park and M. Ghovanloo, "A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation," IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2203-2216, Sep 2013.
    [21] H.-M. Lee and M. Ghovanloo, “An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 286–288
    [22] C. Kim, S. Ha, J. Park, A. Akinin, P. P. Mercier, and G. Cauwenberghs, “A 144MHz integrated resonant regulating rectifier with hybrid pulse modulation,” in IEEE Symp. VLSI Circuits, Jun. 2015, pp. C284–C285.
    [23] L. Cheng, W.-H. Ki, T. T. Wong, T. S. Yim, and C. Y. Tsui, “A 6.78MHz 6W wireless power receiver with a 3-level 1 × /1/2 × /0× reconfigurable resonant regulating rectifier,” in IEEE ISSCC Dig. Tech. Papers, Jan. 2016, pp. 376–377.
    [24] W. Zhang, S.-C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979–2990, Jun. 2014.
    [25] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters.
    Hoboken, NJ, USA: Wiley, Nov. 2012.
    [26] S. S. Hashemi, M. Sawan, and Y. Savaria, “A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 4, pp. 326–335, Aug. 2012.
    [27] S. Guo and H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796–1804, Jun. 2009.
    [28] Y. Lu, X. Li, W.-H. Ki, C.-Y. Tsui, and C. P. Yue, “A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 66–67.
    [29] K.-G. Moh et al., “A fully integrated 6W wireless power receiver operating at 6.78MHz with magnetic resonance coupling,” in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 1–3.
    [30] A. Satyamoorthy, P. Riehl, H. Akram, Y.-C. Yen, J.-C. Yang, B. Juan, C.-M. Lee, F.-C. Lin, "Wireless power receiver for mobile devices supporting inductive and resonant operating modes", in Proc. IEEE Wireless Power Transfer Conf., pp. 52-55, 2014.
    [31] A. Berger, "A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power", IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6338-6348, Nov. 2015.
    [32] A. Berger, M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos, M. Huemer, "Phase-Shift and Amplitude Control for an Active Rectifier to Maximize the Efficiency and Extracted Power of a Wireless Power Transfer System", in Proc. IEEE Appl. Power Electron. Conf Expo., pp. 1620-1624, 2015.
    [33] G. Covic, J. Boys, "Modern Trends in Inductive Power Transfer for Transportation Applications", IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 28-41, Mar. 2013.
    [34] M. Zargham, P. Gulak, "Maximum Achievable Efficiency in Near-Field Coupled Power-Transfer Systems", IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 228-245, Jun. 2012.
    [35] Texas Instruments, “Low System Cost, Wireless Power Controller for WPC TX A5 or A11,” bq500212A evaluation module user’s guide, July 2013. [Revised Jan. 2014].
    [36] Texas Instruments, “Highly Integrated Wireless Receiver Qi (WPC V1.1) Compliant Power Supply,” bq51013B datasheet, Mar. 2013. [Revised Oct. 2013].

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE