| 研究生: |
瞿鴻遠 Chu, Hung-Yuan |
|---|---|
| 論文名稱: |
連續時間帶通三角積分調變器之設計方法與驗證 Design Methodology and Verification of a Continuous-Time Bandpass Delta-Sigma Modulator |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 調變器 、帶通 |
| 外文關鍵詞: | delta-sigma |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電路設計的流程中,行為模型(behavior model)的建立是非常重要的一個環節,藉由比較簡單的高階表示方式與圖形介面,可以讓我們在短時間內針對自己設計的系統進行行為模擬,藉以驗證該設計的正確性。經過行為模型驗證無誤後,再進行電路的設計,能避免直接進入電路設計卻在半途發現有系統考量上的疏失,而要重新設計的風險。
在現有論文中,大多是單就行為模型的建立或是僅著重於delta sigma調變器的電路實現,並沒有將行為模型的平台融入設計流程中,而本篇論文針對這樣的情形提出一套由上至下(top-down)設計流程透過Simulink、Verilog-A兩種模擬方式來輔助delta sigma調變器的設計。
本論文所使用的行為模擬平台分別建置在SIMULINK以及Cadence’s Spectre兩種環境下。最後我們將此設計流程實際套用在一個應用於WCDMA系統中的連續時間帶通delta-sigma調變器的設計上,其規格為中心頻率100MHz,電路內部的量化器(quantizer)操作在400MHz的頻率,此調變器使用TSMC 0.35μm CMOS 製程技術進行模擬,供應電壓為3.3V時,在3.84MHz的頻寬內,最大的SNR可以達到38.6dB,其相對應大約為6-bit的解析度。
In the design flow of circuits, building the behavior models is very important. The behavior of the system can be simulated and the result can be verified in a short time by using a higher level platform and the simpler user interface. Designing the circuit after confirming the simulation results of a behavior model helps the designers avoid making too many mistakes.
From the searched literatures for the design of CT BP delta-sigma modulator, we found that some of them only focused on building a behavior model and others focused only on the circuit implementation. Almost none was found to consider both the behavior model and the physical implementation at the same time. Hence, we develop a top-down design flow using Simulink and Verilog-A for it to facilitate the design work.
This paper presents a design methodology of a continuous-time(CT) Band-pass(BP) delta-sigma modulator which can simplify the design procedure. The models were built in SIMULINK and Cadence’ s Spectre environment. Finally, the flow is used in the design of a CT BP delta-sigma modulator which is applied to a WCDMA communication system. The center frequency of this modulator is at 100MHz and the internal quantizer operated at 400MHz clock frequency. The modulator is simulated in TSMC 0.35μm CMOS technology, at a supply voltage of 3.3V. The maximum SNR is 38.6dB for a 3.84MHz bandwidth, which corresponds to a resolution of 6 bits.
[1] Gary Levy and Silicon Laboratories “Translate your WCDMA spec into receiver requirements” 2006, http://www.mobilehandsetdesignline.com/showArticle.jhtml? articleID=192202259
[2] T. Salo, S. Lindfors and K. Halonen “A 80MHz band- pass ΔΣ-modulator for a 100MHz IF-receiver”, In Proc. IEEE JSSC, vol.37, pp.798 – 808, July 2002.
[3] V. Colonna, G. Gandolfi, F. Stefani and A. Baschirotto “A 10.7-MHz self-calibrated switched- capacitor-based multibit second-order bandpass ΣΔ modulator with on-chip switched buffer,” In Proc. IEEE JSSC, vol.39, pp.1341 – 1346, Aug 2004.
[4] J. Arias , P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J.S. Pablo, L. Quintanilla and J. Barbolla , “A 32-mW 320-MHz Continuous-Time Complex Delta-Sigma ADC for Multi-Mode Wireless-LAN Receivers,” In Proc. IEEE JSSC, vol.41, Issue 2, pp.339 – 351, Feb 2005.
[5] L. J. Breems, R. Rutten and G. Wetzker, “A Cascaded Continuous-Time ΣΔ Modulator With 67-dB Dynamic Range in 10-MHz Bandwidth,” In Proc. IEEE JSSC, vol.39, Issue 12, pp.2152 – 2160, Dec 2004.
[6] S. Yan and E. Sanchez-Sinencio, “A Continuous-Time Modulator With 88-dB Dynamic Range and 1.1-MHz Signal Bandwidth,” In Proc. IEEE JSSC, vol.39, Issue 1, pp.75 – 86, Jan 2004.
[7] Takafumi YAMAMOTO, “Concurrent Design of Delta-Sigma Modulator Using Behavioral Modeling and Simulation with the Verilog-A,” In Proc. IEEE CICC, pp.341-344, Sept. 2006.
[8] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato and A. Baschirotto “Behavioral modeling of switched-capacitor sigma-delta modulators,” In Proc. IEEE TCSI, vol. 50, Issue 3, pp.352 – 364, Mar 2003.
[9] H. Zare-Hoseini, I. Kale and O. Shoaei “Modeling of switched-capacitor delta-sigma Modulators in SIMULINK,” In Proc. IEEE TIM, vol. 54, Issue 4, pp.1646 – 1654, Aug 2005.
[10] R. Sobot, S. Stapleton and M. Syrzycki “Behavioral modeling of continuous time ΔΣ modulators,” In Proc. IEEE BMAS, pp.88 – 91, Oct.2003.
[11] F. Mannozzi, F. Tinfena' and L. Fanucci “Sigma Delta ADC Design Using Verilog-A,” In Proc. IEEE MWSCAS, vol.1, pp.55 – 58, Dec.2003.
[12] Harri Holma, Antti Toskala著,付景興,馬敏,陳澤強, 周華 主譯, “第三代行動通訊系統的無線電存取技術與系統 設計”五南圖書出版公司
[13] Third Generation Partnership Project. [Online] Available: http://www.3gpp.Org
[14] T. Burger and Q. Huang, “A 13.5mW 185-Msample/s sigma-delta modulator for UMTS/GSM dual-standard IF Reception,” IEEE JSSC vol.36, NO. 12, pp.1868-1878, Dec. 2001.
[15] Shih-Hsuan Hsu, “A Continuous-Time Bandpass Sigma- Delta Modulator for Digital-IF Receiver,” Master Dissertation, National TSING HUA University, Taiwan, June 2005.
[16] George I Bourdopoulos, Aristodemos Pnevmatikakis, Vassilis Anastassopoulos and Theodore L Deliyannis, “Delta-Sigma Modulators: Modeling, Design and Applications,” Imperial College Press, 2005.
[17] Sangil Park, “Principles of Sigma-Delta Modulation for Analog-to-Digital Converters,” Motorola Digital Signal Processors, Strategic Applications, April 8.
[18] Richard Schreier and Gabor C. Temes “Understanding Delta-Sigma Data Converters,” John Wiley & SONS, INC, 2005.
[19] A. V. Oppenheim and R. W. Schafer, “Discrete time Signal Processing,” Prentice-Hall, 1989.
[20] Omid Shoaei, “Continuous-time delta-sigma A/D converters for high speed applications,” PHD Dissertation, Carleton University, Canada, Nov 1995.
[21] James A. Cherry and W. Martin Snelgrove “Continuous- time delta-sigma modulators for high-speed A/D conversion theory, practice and fundamental performance limits,” KLUWER ACADEMIC PUBLISHERS, 1999.
[22] J. C. Candy, “A use of double integration in sigma delta modulation,” IEEE Trans. Commun. , vol. com-33, No. 3, pp. 249-258, March 1985.
[23] F. M. Gardner. “A transformation for digital simulation of analog filters,” IEEE Trans. Communications, pages 676-680, July 1986.
[24] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato and A. Baschirotto “A multi- feedback design for LC bandpass Delta-Sigma modulators,” In Proc. IEEE TCSI, vol. 50, Issue 3, pp.352 – 364, Mar 2003.
[25]“Analog Modeling with Verilog-A Virsion 5.1.41 Lecture Manual Lab Book,” Cadence Design System, Inc.
[26] R. Sobot, “Design methodology for continuous-time bandpass sigma-delta modulators,” PHD Dissertation, Simon Fraser University, Canada, Fall 2005.
[27] R.Schreier, "The Delta-Sigma Toolbor", 2000, www.mathworks.com/matlabcentral/fileexchange.
[28] David Johns and Ken Martin, “Analog Integrated Circuit Design,” John Willey & Sons, Inc.
[29] Hsu Kuan Chun Issac “A 70 MHz CMOS Band-pass Sigma- Delta Analog-to-Digital Converter for Wireless Receivers,” Master Dissertation, Hong Kong University, Hong Kong, August 1999.
[30] Hsu. I, Guo.C and Luong, H.C. “A 70-MHz continuous- time CMOS band-pass ΣΔ modulator for GSM receivers,” In Proc. IEEE ISCAS, vol.3, pp.750 – 753, May. 2000.
[31] Xuemei Liu, “Design of A 125MHz Tunable Continuous- time Bandpass ΣΔ Modulator for Wireless IF Applications,” Master Dissertation, Texas A&M University, December 2005.
[32] B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid- State Circuits, vol. 27, pp. 142-153, Feb. 1992.
[33] E. Sanchez-Sinencio and J. Silva-Martinez, “CMOS transconductance amplifiers, architectures and active filters: a tutorial,” in IEEE Proceedings on Circuits, Devices and Systems, vol.147, pp. 3-12, Feb. 2000.
[34] Lewinski and J. Silva-Martinez, “OTA linearity enhancement technique for high frequency application with IM3 below –65dB,” CICC 2003, September, pp.9- 12, 2003.
[35] Pual R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer “Analysis and design of analog integrated circuits,” John Wiley & Sons, Inc, 2001.
[36] A. Yukawa, “A CMOS 8-bit high-speed A/D converter IC,” IEEE J. of Solid-State Circuits, vol. no. SC-20, no. 3, June 1985.
[37] J. Ho and H. Luong, “A 3-V 1.47mW 120-MHz Comparator for Use in Pipeline ADC,” Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems 96, pp. 413-416, Nov. 1996.