| 研究生: |
林家宇 Lin, Chia-Yu |
|---|---|
| 論文名稱: |
生醫用氧化鋯進行電漿表面改質作為提供細胞相容性之應用 Zirconia surface modifications by plasma treatments for cytocompatibility application |
| 指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 人工牙根 、氧化鋯 、電漿表面處理 、骨癒合速度 、骨整合 |
| 外文關鍵詞: | Dental implant, Zirconia, Plasma treatment, Osseointegration |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
理想人工牙根須具備有功能性、持久性、生物親和性、抗菌性、手術性與美觀性等要求,氧化鋯因比鈦合金更接近人體牙齒顏色且其彈性係數接近骨組織,因此被選為下一代人工牙根材料。但由於氧化鋯不易利用機械式或化學式等方式做表面改質,而電漿處理為一種低溫電漿處理技術,透過離子化氣體產生電漿,有利於氧化鋯表面形成化學鍵結。因此本研究主要以電漿處理技術,於O2、H2O 氣氛下,利用電漿活化氧化鋯基材表面,提高與鈣磷化合物鍵結強度,進而提供氧化鋯長期生物親和性。第一步驟,氧化鋯基材在O2、H2O 氣氛環境下,利用DC 直流及RF 交流電漿分別進行電漿表面改質;第二步驟,電漿活化氧化鋯基材表面後,浸泡人體模擬體液,以MG-63 細胞培養和血小板貼附測試,進行評估細胞及血液相容性。從實驗結果顯示,於接觸角測試中發現,經電漿處理過後,比起未處理之控制組,確實有效提高氧化鋯試片之親水性,並於ESCA 分析中之水氣電漿處理,發現Zr/OH binding shift,在浸泡人體模擬體液測試中,於H2O 氣氛下之低功率DC 電漿及O2 氣氛下之高功率RF 電漿處理,能夠在其表面上形成更均勻之鈣磷化合物層, EDS 分析中浸泡模擬體液16 天,塗層之Ca / P 比值介於1.5-1.67,並且於X-ray 分析中,證實此兩結晶相三鈣磷酸鹽和氫氧基磷灰石之存在,最後於細胞親和性與血液相容性評估,結果顯示,電漿處理過後之氧化鋯表面,並無產生細胞毒性,亦可促使細胞在表面的初期貼附能力,且於水氣電漿更增加了蛋白質吸附量,而在血小板貼附觀察及活化測試經水氣電漿處理過後,降低血小板之吸附量。本研究證實,氧化鋯人工牙根經氧氣電漿及水氣電漿處理過後,可促使表面形成鈣磷化合物及蛋白質吸附,尤其在低功率DC 水氣電漿活化組別,即達到提高氧化鋯表面之生物活性,進而促進骨癒合與骨整合之效果。
An ideal implant is needed to have a functional,persistent, bio-compatibility,antibacterial, surgical and aesthetics requirements. Zirconia is white and mimicking natural teeth better than titanium which has been chosen as the next generation of implant materials. However, zirconia is not easy to modification by mechanical and chemical methods. Thus, plasma treatment which is a low-temperature technique
plasma to generate ionized gas plasma for modified chemical group of zirconia.
Therefore, the aim of this study will focus on plasma-activated zirconia by O2 and H2O atmosphere and then induce biomimic Ca-P coating for providing long-term
biological responses. The surfaces of zirconia discs were modified by DC plasma or RF plasma in the atmospheres of O2 or H2O. Secondaly, plasma-activated zirconia discs were further immersed in SBF, and then cultured with MG63 cell and platelet to evaluate the cytocompatibility and hemocompatability, separately. The contact angle values showed that the plasma-activated zirconia surface has more hydrophilic than control group. In ESCA analysis, the discs treated with H2O plasma showed the Zr/OH binding shift. After SBF immersion test, Ca/P ratios is about 1.5-1.7 which
between the TCP and HA, and the XRD data confirmed the presence of TCP and HA phase after immersed 16 days. All plasma-activated zirconia substrates can promote
MG63 cells adhesion in early stage. H2O plasma-activated zirconia disc showed better protein adsorption but low platelet adhesion. The study demonstrated that biomedical zirconia implant with O2 and H2O plasma activation process can promote biomimic Ca-P formation and protein adsorption, The experimental results suggest that plasma activation process can enhance bone healing and osseointegration of
artificial zirconia implant.
1. Ratner, B., Hoffman, A., S Schoen, F., Biomaterials science: an introduction to
materials in medicine. 2004: Academic press.
2. Behera, A., Classification of Biomaterials used in Medicine. International Journal of
Advances in Applied Sciences, 2012. 1(3) : p. 31-35.
3. Hench, L.L., Bioceramics: from concept to clinic. Journal of the American Ceramic
Society, 2005. 74(7): p. 1487-1510.
4. Ducheyne, P. and K. Healy, Surface spectroscopy of calcium phosphate ceramic and
titanium implant materials. Surface characterization of biomaterials. Amsterdam:
Elsevier, 1988: p. 175.
5. Brown, S.A., Farnsworth, L. J., Merritt, K., In vitro and in vivo metal ion release.
Journal of biomedical materials research, 1988. 22(4): p. 321-338.
6. Doremus, R., Bioceramics. Journal of materials science, 1992. 27(2): p. 285-297.
7. Schwartz, Z. and B. Boyan, Underlying mechanisms at the bone–biomaterial
interface. Journal of cellular biochemistry, 2004. 56(3): p. 340-347.
8. Anil, S., Anand, P.S., Alghamdi, H., Dental Implant Surface Enhancement and
Osseointegration. Implant dentistry-a rapidly evolving practice, Rijeka, InTech, 2011:
p. 86-90.
9. Wang, L., Sun, B., Ziemer, K. S., Chemical and physical modifications to poly
(dimethylsiloxane) surfaces affect adhesion of Caco‐2 cells. Journal of Biomedical
Materials Research Part A, 2010. 93(4): p. 1260-1271.
10. Luna, S.M., Silva, S. S. , Gomes, M. E., Cell adhesion and proliferation onto
chitosan-based membranes treated by plasma surface modification. Journal of
biomaterials applications, 2011. 26(1): p. 101-116.
11. Depprich, R., Zipprich, H., Ommerborn, M., Osseointegration of zirconia implants
compared with titanium: an in vivo study. Head Face Med, 2008. 4: p. 30.
12. Garvie, R., R. Hannink, and R. Pascoe, Ceramic steel? 1975.
13. Heuer, A.H., Transformation Toughening in ZrO2‐Containing Ceramics. Journal of
the American Ceramic Society, 2005. 70(10): p. 689-698.
14. Kumar, S. and E. Subbarao, Complex impedance and admittance of stabilised
zirconia. Solid State Ionics, 1981. 5: p. 543-546.
15. Volpato, C., Garbelotto, L. G. D., Fredel, M. C., Application of Zirconia in Dentistry:
Biological, Mechanical and Optical Considerations, 2011, In Tech. Europe, Rijeka:
Croatia. p. 397..
16. Butler, E., Transformation-toughened zirconia ceramics. Materials Science and
Technology, 1985. 1(6): p. 417-432.
50
17. Claussen, N., Fracture Toughness of Al2O3 with an unstabilized ZrO2 dispersed phase.
Journal of the American Ceramic society, 2006. 59(1‐2): p. 49-51.
18. Grigoryev, O., et al., Effect of zirconia (3 mol% yttria) additive on mechanical
properties and structure of alumina ceramics. Journal of materials science, 1994.
29(17): p. 4633-4638.
19. Riedel, R., Handbook of ceramic hard materials. 2000: Wiley-Vch.
20. Scott, H., Phase relationships in the zirconia-yttria system. Journal of Materials
Science, 1975. 10(9): p. 1527-1535.
21. Heuer, A., Claussen, N., Kriven, W.M., Stability of tetragonal ZrO2 particles in
ceramic matrices. Journal of the American Ceramic Society, 1982. 65(12): p. 642-
650.
22. Lange, F., Transformation ‐ Toughened ZrO2: Correlations between Grain Size
Control and Composition in the System ZrO2 ‐Y2O3. Journal of the American
Ceramic Society, 1986. 69(3): p. 240-242.
23. Piconi, C. and G. Maccauro, Zirconia as a ceramic biomaterial. Biomaterials, 1999.
20(1): p. 1-25.
24. Ö zkurt, Z. and E. Kazazoglu, Zirconia dental implants: a literature review. Journal
of Oral Implantology, 2011. 37(3): p. 367-376.
25. Sønderby, S, Physical vapor deposition of yttria-stabilized zirconia and gadoliniadoped
ceria thin films for fuel cell applications. Linköping Studies in Science and
Technology Licentiate Thesis, 2012. 1552.
26. Hollahan, J.R. and A.T. Bell, Techniques and applications of plasma chemistry. 1974:
John Wiley & Sons.
27. Bogaerts, A. and R. Gijbels, Fundamental aspects and applications of glow discharge
spectrometric techniques. Spectrochimica Acta Part B: Atomic Spectroscopy, 1998.
53(1): p. 1-42.
28. McTaggart, F.K., Plasma chemistry in electrical discharges. 1967.
29. Tendero, C., Tixier, C., Tristant, P., Atmospheric pressure plasmas: A review.
Spectrochimica Acta Part B: Atomic Spectroscopy, 2006(1): p. 2-30.
30. Eliasson, B. and U. Kogelschatz, Nonequilibrium volume plasma chemical
processing. Plasma Science, IEEE Transactions on, 1991. 19(6): p. 1063-1077.
31. Zhang, Z., R. Foerch, and W. Knoll, Surface modification by plasma polymerization
and application of plasma polymers as biomaterials. European Cells and Materials,
2003. 6(1): p. 52.
32. Selwyn, G., Herrmann, H.W., Park, J., Materials Processing Using an Atmospheric
Pressure, RF‐Generated Plasma Source. Contributions to Plasma Physics, 2001.
41(6): p. 610-619.
33. Gutsol, A., Thermal insulation of plasma in reverse vortex flow. Fusion and Plasma
Physics, 1998. 22(1): p. 2611-2614.
34. Gomathi, N., A. Sureshkumar, and S. Neogi, RF plasma-treated polymers for
biomedical applications. Current science-bangalore, 2008. 94(11): p. 1478.
35. d'Agostino, R., Plasma deposition, treatment, and etching of polymers. 1990:
Academic Press.
36. Hollahan, J.R. and G.L. Carlson, Hydroxylation of polymethylsiloxane surfaces by
oxidizing plasmas. Journal of applied polymer science, 1970. 14(10): p. 2499-2508.
37. Lai, J., Lin, Y.Y., Denq, Y.L., Surface modification of silicone rubber by gas plasma
treatment. Journal of adhesion science and technology, 1996. 10(3): p. 231-242.
38. Yun, Y.I., Kim, K. S., Uhm, S. J., Aging behavior of oxygen plasma-treated
polypropylene with different crystallinities. Journal of adhesion science and
technology, 2004. 18(11): p. 1279-1291.
39. Yamamoto, H., Y. Shibata, and T. Miyazaki, Anode glow discharge plasma treatment
of titanium plates facilitates adsorption of extracellular matrix proteins to the plates.
Journal of dental research, 2005. 84(7): p. 668-671.
40. Rhodes, N.P., D.J. Wilson, and R.L. Williams, The effect of gas plasma modification
on platelet and contact phase activation processes. Biomaterials, 2007. 28(31): p.
4561-4570.
41. Lopez-Heredia, M., et al., Radio frequency plasma treatments on titanium for
enhancement of bioactivity. Acta Biomaterialia, 2008. 4(6): p. 1953-1962.
42. Kokubo, T. and H. Takadama, How useful is SBF in predicting in vivo bone
bioactivity? Biomaterials, 2006. 27(15): p. 2907-2915.
43. Tze-Man, Ko, Jui-Che, Lin, and Cooper, Stuart L, Surface characterization and
platelet adhesion studies of plasma-sulphonated polyethylene. Biomaterials, 1993.
14(9): p. 657-664.
44. Lee, J. H., Khang, G., Lee, J. W., Platelet adhesion onto chargeable functional group
gradient surfaces. Journal of biomedical materials research, 1998. 40(2): p. 180-186.
45. Okkema, A. and S. Cooper, Effect of carboxylate and/or sulphonate ion incorporation
on the physical and blood-contacting properties of a polyetherurethane. Biomaterials,
1991. 12(7): p. 668-676.
46. Middleman, K., J. Herbert, and R. Reid, Cleaning stainless steel for use in
accelerators—Phase 1. Vacuum, 2007. 81(6): p. 793-798.
47. Redey, S., Razzouk, S., Rey, C., Osteoclast adhesion and activity on synthetic
hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate:
relationship to surface energies. Journal of biomedical materials research, 1999.
45(2): p. 140-147.
52
48. Piascik, J.R., S.D. Wolter, and B.R. Stoner, Development of a novel surface
modification for improved bonding to zirconia. Dental Materials, 2011. 27(5): p. e99-
e105.
49. Zhang, L. and Y. Han, Enhanced bioactivity of self-organized ZrO2 nanotube layer
by annealing and UV irradiation. Materials Science and Engineering: C, 2011. 31(5):
p. 1104-1110.
50. Ardizzone, S. and C.L. Bianchi, Electrochemical features of zirconia polymorphs.
The interplay between structure and surface OH species. Journal of Electroanalytical
Chemistry, 1999. 465(2): p. 136-141.
51. Kokubo, T., Miyaji, F., Kim, H.M., Spontaneous formation of bonelike apatite layer
on chemically treated titanium metals. Journal of the American Ceramic Society,
1996. 79(4): p. 1127-1129.
52. Beranič Klopčič, S., I. Pribošič, and T. Kosmač, The formation of an apatite coating
on Y-TZP zirconia ceramics. Vol. 330. 2007: Trans Tech Publ.
53. Dee, K.C., D.A. Puleo, and R. Bizios, An introduction to tissue-biomaterial
interactions. 2003: Wiley-Liss.
校內:2023-08-31公開