簡易檢索 / 詳目顯示

研究生: 林建利
Lin, Jian-Li
論文名稱: 具耦合電感與切換式電容之高降壓轉換器
A High Step-down Buck Converter with Coupled Inductor and Switched Capacitor
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 65
中文關鍵詞: 高降壓耦合電感切換式電容零電壓切換
外文關鍵詞: High step-down, coupled inductor, switched capacitor, zero-voltage switching (ZVS)
相關次數: 點閱:124下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一結合耦合電感以及切換式電容技術之高降壓直流-直流轉換器,具有高的電壓轉換比,使得電路之主開關可操作於較低的責任週期比。其中切換式電容除了用來提高降壓比之外,還消除因漏感能量而導致在主開關上所造成的電壓突波,因此可選用較低之電壓應力元件。另外,切換式電容之輔助開關具有零電壓導通的特性。此外,因所提出的電路其電感電流當下降為零時,會往反方向移動並迫使主開關的本體二極體導通,因此主開關也同時具有零電壓導通的特性,切換損可以有效地降低並進而顯著地提升整體轉換效率。本論文透過一輸入電壓200V、輸出電壓24V、額定為200W之實體電路,驗證所提出之高降壓直流-直流轉換器電路。根據實驗結果證實,本文所提轉換器最高效率為95.8%,而整體效率大多在93%以上。

    This thesis proposes a buck converter with coupled inductor and switched-capacitor techniques. By employing the proposed topology, the DC-DC converter achieves high voltage conversion ratio. The switched-capacitor cell is not only used to achieve high step-down voltage gain, but eliminate the voltage spike induced by the trapped energy in the leakage inductance of the coupled inductor. Besides, the auxiliary switch in switched-capacitor cell has zero-voltage-switching (ZVS) feature. Thus, the main switch of the converter can sustain a lower duty ratio and a lower voltage stress. Moreover, the inductor current flows in the opposite direction while it drops to zero, and the main switch can be turned on with zero-voltage-switching. Since both main and auxiliary switches have ZVS feature, switching loss can be reduced, and conversion efficiency can, therefore, be improved significantly. A prototype circuit of 200W, 200V input-voltage, and 24V output-voltage has been implemented to verify the proposed converter. The experimental results have shown that voltage spike can be greatly suppressed and the maximum efficiency can reach 95.8% and the overall efficiency is almost above 93%.

    摘要...i ABSTRACT...ii 誌 謝...iii Table of Contents...iv List of Figures...vii List of Tables...ix Chapter 1. INTRODUCTION...1 1.1 Backgrounds and Motivations...1 1.2 Review of Previous Work...2 1.3 Contributions of this research...4 1.4 Thesis Outline...6 Chapter 2. REVIEW OF STEP-DOWN CONVERTERS...7 2.1 Introduction...7 2.2 Conventional buck converter...7 2.3 Cascade Technique...8 2.4 Charge-Pump Technique...9 2.5 Switched-Capacitor Technique...11 2.6 Coupled Inductor Technique...15 2.7 Summary...18 Chapter 3. PROPOSED HIGH STEP DOWN BUCK CONVERTER...19 3.1 Introduction...19 3.2 Proposed Converter...19 3.3 Analysis and Design of the Proposed Converter...30 3.3.1 Voltage Gain Expression...30 3.3.2 Voltage Stress Analysis...31 3.3.3 Design Guidelines...33 3.3.4 Design Procedure...35 3.4 Analysis and Control of the Proposed Converter...35 3.4.1 Open-Loop Bode plot...36 3.4.2 Compensator Design of the Proposed Converter...37 3.5 Summary...39 Chapter 4. SIMULATION AND EXPERIMENTAL RESULTS...41 4.1 Introduction...41 4.2 Prototype Circuit...41 4.2.1 Specifications...41 4.2.2 Power Switch Driving Circuits...43 4.2.3 Feedback Circuits...44 4.3 Simulated and Experimental Results...45 4.4 Summary...61 Chapter 5. CONCLUSIONS AND FUTURE WORK...62 5.1 Conclusions...62 5.2 Future work...63 REFERENCES...64

    [1]D. Maksimovic and S. Cuk, “Switching converters with wide DC conversion range, ” IEEE Trans. Power Electron., vol. 6, pp. 151-157, Jan. 1991.
    [2]V. Paceco, A. Vascimento, V. Farias, J. Viera, and L. Freitas, “A quadratic buck converter with lossless commutation,” IEEE Trans. Ind. Electron., vol. 47, pp. 264-271, Apr. 2001.
    [3]R. Guo, Z. Liang, and A. Q. Huang, “A family of multimodes charge pump based dc-dc converter with high efficiency over wide input and output range,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4788-4798, Nov. 2012.
    [4]B. Axelrod, Y. Berkovich, S.Tapuchi, and A. Ioinovici, “Single-stage single-switch switched-capacitor buck/buck-boost-type converter,” IEEE Trans. Aerosp. Electro. Syst., vol. 45, no. 5, pp. 419-430, Apr. 2009.
    [5]Y. Jiao and F. L. Luo, “N-switched-capacitor buck converter: topologies and analysis,” IEEE Trans. IET Power Electron., vol. 4, pp. 332-341, 2011.
    [6]S.Xiong, S. C. Tan, and S. C. Wong, “Analysis and design of a high-voltage-gain hybrid switched-capacitor buck converter,” IEEE Trans. Circuit and Syst., vol. 59, no. 5, pp. 1132-1141, May 2012.
    [7]B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc-dc PWM converters,” IEEE Trans. Circuit and Syst., vol. 55, no, 2, pp. 687-696, Mar. 2008.
    [8]I. O. Lee, S. Y. Cho,and G. W. Moon, “Interleaved buck converter having low swithing losses and improved step-down conversion ratio,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3664-3675, Aug. 2012.
    [9]H. Cheng, K. M. Smedley, and A. Abramovitz, “A wide-input-wide-output (WIWO) dc-dc converter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 280-289, Feb. 2010.
    [10]A. Abramovitz and K. M. Smedley, “Analysis and design of a tapped-inductor buck-boost PFC rectifier with low bus boltage,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2637-2649, Sep. 2011.
    [11]K. Yao, M. Ye, M. Xu, and F. C. Lee, “Tapped-inductor buck converter for high-step-down dc-dc conversion,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 775-780, July 2005.
    [12]T. F. Wu, J. C. Hung, H. S. Nien, and H. M. Su, “Analysis and design of an active-clamp buck converter with coupled inductors,” in Proc. IEEE APEC, pp. 399-405, 2005.
    [13]C. T. Tsai and C. L. Shen, “Interleaved soft-switching coupled-buck converter with active-clamp circuits,” in Proc. IEEE PEDS, pp. 1113-1118, 2009.
    [14]K. Yao, Y. Qiu, M. Xu, and F. C. Lee, “A novel winding-coupled buck converter for high-frequency, high-step-down dc-dc conversion,” IEEE Trans. Power Electron., vol. 20, no, 5, Sep. 2005.
    [15]N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics, WILEY.

    下載圖示 校內:2018-08-13公開
    校外:2018-08-13公開
    QR CODE