| 研究生: |
李自強 Li, Tz-Chiang |
|---|---|
| 論文名稱: |
孤立波造波之研究 Numerical Study of Solitary Waves Generation |
| 指導教授: |
唐啟釗
Tang, Chi-Jau 丁舜臣 Ding, Shuen-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 貼壁格網 、接觸線 、孤立波 、流函數 、有限解析法 |
| 外文關鍵詞: | solitary wave, stream function, finite-analytic method, boundary-fitted grid, contact line |
| 相關次數: | 點閱:141 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以流函數滿足之Laplace方程式作為內部流場控制方程式,使用有限解析法(Finite Analytic Method)離散其於瞬時貼壁座標系統(Transient Boundary-fitted Coordinates),以全域移動格網處理完整的自由液面及造波板移動邊界問題,最後以三對角矩陣元素法求解流函數。在造波板與自由液面交界處使用接觸線條件處理,以模擬二維無黏性數值造波流場問題。
本文使用造波板運動速度決定接觸點及該板之流函數值 ,自由液面之流函數則由該處之動力條件(FSDC)決定;自由液面運動條件(FSKC)決定自由水位(包含接觸點)上昇高度,或亦是可由自由液面動力條件決定接觸點水位。但該點只能在自由液面的二條件擇一滿足,否則產生矛盾的超額定(overdetermine)的方程系統。本文採用運動條件決定。
文中先以「孤立波在平底床傳遞」與「垂直板瞬間向前推動產生長波」兩問題,分別與張志華(1997)及Yang & Chwang (1992)兩文之數值與實驗資料比較,作為本計算模式之數值驗證。最終模擬造波板定加速度運動與孤立波造波模擬,對波生成過程之自由液面與流場之瞬時變化、接觸線附近物理現象(接觸角與移動接觸線速度)、質量守恆問題、自由液面瞬變之頻譜分析等進行探討。
This thesis attempts to use the Laplace equation to formulate the stream function for the studied flow problem, and to discretize it by the Finite Analytic Method in a transient boundary-fitted coordinate system. Evoluted grid with time is designed to conform those moving boundaries on the free water surface and on the accelerated plate, and then the stream function is solved tridiagonal matrix algorithm. The special contact-line condition at the intersection of the accelerated plate and the free surface is considered to simulate the water wave generation problem based on the two-dimensional, inviscid flow.
The author uses the velocity of accelerated plate for the instantaneous value of stream function there while he applies the dynamic condition for it instead on the free surface. In addition, the free-surface kinematic condition can then be used to determine the locations of both contact point and water surface. However, another way to determine the contact point is done by applying the free-surface dynamic condition. Since the finial decision must be taken for the choice of either between the two conditions at the contact point to keep from the overdetermined problem, the author select the kinematic one for it.
Two numerical problems, one for a solitary wave propagating along a long channel and the other for long wave, making by an accelerated vertical plate, are calculated to compare with Chang (1997) and Yang & Chwang (1992), respectively, which validated the present numerical model. After that, during the simulation on wave making by a plate at constant acceleration and on solitary wave generation, the thesis analyses the evolved wave and free-surface flow pattern, the fluid motion around the moving contact line, the conservation of mass, and the spectral distribution in the flow field.
1.余啟鴻(1993)「二維滑潰引致湧浪現象」,國立成功大學水利及海洋工程研究所碩士論文。
2.唐啟釗(1992)「水庫邊坡滑潰導致湧浪研究(二)」,行政院國家科學委員會,防災科技研究報告80-54號。
3.張志華(1997)「孤立波與結構物在黏性流體中互制作用之研究」,國立成功大學水利及海洋工程研究所博士論文。
4.黃煌煇、江文山、唐啟釗(2001)「二維渠道中考慮流體黏滯性之瞬變造波模擬」,中國土木水利工程學刊,第十三卷,第三期,pp. 585-592。
5.A.T. Chwang, 1983, “Nonlinear Hydrodynamic Pressure on an Accelerating Plat,”
The Physics of Fluid, Vol. 26, No. 2, pp. 383-387.
6.Batchelor, G..K., Moffatt, H.K. and Worster, M.G.., 2000, “Perspectives in Fluid Dynamics,” Cambridge University Press
7.Chen, C-J., and Chen, H-C., 1982, “The Finite Analytic Method,” IIHR Report 232-IV, IOWA Institute of Hydraulic Research, The University of IOWA.
8.Dean, R. G. & R. A.Dalrymple, 1984, “Water Wave Mechanics for Engineers and Scientists,” pp.170-177
9.Dussan V., E. B., 1976, “The Moving Contact Line:The Slip Boundary Condition.,” J. Fluid Mech., 77, pp. 665-684.
10.Dussan V., E. B., 1979, “On The Spreading of Liquids on Solid Surface:Static and Dynamic Contact Lines.,” Ann. Rev. Fluid Mech., 11, pp. 371-400.
11.Dussan V., E. B., and Chow, R. T. –P. ,1983, “On The Ability of Drops or Bubbles to Stick to Non-horizontal Surface of Solid.,” J. Fluid Mech., 137, pp. 1-29.
12.Goring, D.G.. and F. Raichlen,1980, “The Generation of Long Wave in the Laboratory,” Proc. 17th Int. Conf. Coastal Eng., ASCE, pp. 763-783.
13.Grimshaw, R., 1971, “The Solitary Wave in Water of Variable Depth, Part 1,” Journal of Fluid Mechanics, Vol. 46, pp. 611-622.
14.Huang, C. J., E. C. Zhang, and J. F. Lee, 1998, ”Numerical Simulation of Nonlinear Viscous Wavefields Generated by a Piston-Type Wavemaker,” J. Eng. Mech., Vol. 124, pp. 1110-1120.
15.Mei, C.C., 1983, “The Applied Dynamics of Ocean Surface Waves,” Wiley, N. Y.
16.Patankar, S.V., 1980, “Numerical Heat Transfer and Fluid Flow,” McGraw-Hill.
17.S.A. Yang and A.T. Chwang, 1992, “About the Moving Contact Line,” Journal of
Engineering Mechanics, Vol.118, No.4, pp.735-745.
18.S.A. Yang and A.T. Chwang, 1992, “An Experimental Study of Nonlinear Waves
Produced by an Accelerating Plate,” The Physics of Fluid, Vol.4, No.11, pp.2456-2465.
19.Sebra-Santos, F.J., D.P. Renouard, and A.M.Temperville, 1987, “Numerical and Experimental Study of the Transformation of a Solitary Wave over a Shelf or Isolated Obstacle,” Journal of Fluid Mechanics, Vol. 176, pp. 117-134.
20.Stephan T. Grilli, Juan Horrillo, 1997, “Numerical Generation and Absorption of Fully Nonlinear Periodic Waves,” J. Eng. Mech., Vol. 123, pp. 1060-1069.
21.Thompson, J.F., Z.U.A. Warsi, C. Wayne Mastin, 1985, “Numerical Grid Generation:Foundation and Application,” North-Holland, N. Y.
22.Ursell, F. and R. G. Dean and Y. S. Yu, 1960, “Forced Small Amplitude Water Wave:A Comparison of Theory and Experiment,” J. Fluid Mech., Vol. 7, Pt. 1
23.Wu, G. X. and Taylor, R. E., 1994, “Finite Element Analysis of Two-Dimensional Non-Linear Transient Water Waves,” Applied Ocean Research, Vol. 16, pp. 363-372.
24.Yasuda, T., S. Shinoda, and T. Hattori, 1994, “Soliton-mode Wavemaker Theory and System for Coastal Waves,” 24th Coastal Eng. Conf., ASCE, pp. 704-718.