簡易檢索 / 詳目顯示

研究生: 賴冠樺
Lai, Kuan-Hua
論文名稱: 操作於邊界導通模式之數位功因修正升壓型轉換器研究與設計
Study and Design of Digital Boost PFC Converter with BCM Operation
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: AC-DC轉換器升壓型轉換器功因修正可變導通時間控制數位控制
外文關鍵詞: AC-DC converter, Boost converter, Power factor correction (PFC), Variable on-time control, Digital Control
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究題目為可變導通時間控制之數位功因修正升壓型轉換器,詳細探討了操作於邊界導通模式之固定導通時間控制功因修正轉換器的研究議題,包括如何提升切換效率以及輸入電流失真的問題,並探討類比文獻實現做法,再從類比實現作法中帶入數位化研究現況,並說明數位與類比實現差異。
    本作品根據研究結果設計一適用於升壓型功因修正轉換器的控制法,並且使系統操作於邊界導通模式,在預計規格下皆可達到良好的功因修正效果。所實現之新型並且易於數位實現的可變導通時間控制演算法能改善系統在邊界導通模式電流失真嚴重的問題,如此可降低輸入電流總諧波失真達到本論文研究目的,並且提升功因值。再搭配適當的零電壓及波谷切換,以提升切換效率。最後以FPGA搭配功率級板完成系統驗證與量測。相較於目前數位文獻的實現方式,本作品所提出之新型控制法簡化了複雜的波型分析又降低數位硬體實現成本,並且有明顯改善功因值的效果,最後本作品電流總諧波失真在預計規格下皆小於10%,功因值皆大於0.9,符合國際規範標準。

    In this paper, the research topic is study and design of digital power factor correction (PFC) Boost Converter with boundary conduction mode (BCM) operation. The issue and analog implementation methods of BCM PFC are discussed in detail, including how to improve switching efficiency and the serious current distortion. Then, digital imple-mentation methods and the differences between the various implementation methods will be introduced
    According to the conclusion after the study, this paper designs a digital boost PFC con-verter, which uses variable on-time control to minimize the effect of negative current and has BCM operation. Under zero voltage switching (ZVS) condition and valley switching (VS) condition, the efficiency of the system can be improved. In addition, the digital variable on-time control can improve the serious current distortion of the system in BCM. This method can reduce the total harmonic distortion (THD) of the input current to achieve the research purpose of this paper. Finally, the control verification and system measurement are completed by the FPGA. This paper proposed a simple method to de-rive and realize optimal on-time formula under ZVS/VS condition in BCM. Compared with digital implementation of literature, the variable on-time control proposed in this work can reduce the cost of digital hardware implementation without realizing compli-cated formula.Finally, the current THD of this work is less than 10% and power factor is greater than 0.9.

    摘要 I 致謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 目標與貢獻 3 1.3 論文結構編排 3 第二章 主動功因修正升壓型轉換器 4 2.1 相移功率因數及失真功率因數 4 2.2 功因修正升壓型轉換器 7 2.2.1 操作模式 7 2.2.2 工作原理 10 2.2.3 電流控制BCM功因修正控制法 16 2.2.4 前端及輔助電路 23 第三章 固定導通時間控制升壓型功因修正轉換器 26 3.1 電壓控制邊界導通模式(BCM)功因修正控制法 26 3.2 提高切換效率 32 3.2.1 切換損失問題 32 3.2.2 零電壓切換(ZVS)及波谷切換(VS) 33 3.2.3 研究現況 37 3.2.4 比較與討論 39 3.3 改善輸入電流失真 41 3.3.1 負電流問題及零交越點失真 41 3.3.2 研究現況 42 3.3.3 比較與討論 47 3.4 數位化研究現況 49 3.4.1 零電壓切換(ZVS)及波谷切換(VS) 54 3.4.2 輸入電流失真改善 56 3.4.3 比較與討論 62 第四章 數位可變導通時間控制升壓型功因修正轉換器設計 64 4.1 目標與應用 64 4.2 規格與架構 64 4.3 功率級與外掛元件的選擇 66 4.4 數位控制器設計 69 4.4.1 電壓迴路設計 69 4.4.2 ZVS/VS切換 71 4.4.3 可變導通時間控制法 72 4.4.4 系統運作流程 75 4.5 模擬設計平台及系統建模 76 4.6 系統模擬驗證 77 第五章 FPGA系統實作與量測驗證 81 5.1 實作平台與電路板設計 81 5.2 量測規劃與量測環境 83 5.3 量測驗證結果 84 5.4 成果比較與討論 88 第六章 結論 90 6.1 總結與貢獻 90 6.2 未來工作與研究方向 90 參考文獻 92

    [1]G. Gritti and C. Adragna, "Novel voltage-mode control for DCM/CCM boundary PFC boost converters achieves high efficiency and low THD," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 7-15.
    [2]PFC Harmonic Current Emissions – Guide to EN61000-3-2:2014 [Online]. Available: http://www.epsma.org/PFC%20Guide_03032018%20(3)%20final%207-7.pdf
    [3]Power Integrations. LCD TV|AC-DC Converters. Available: https://ac-dc.power.com/zh-hant/applications/lcd-tvs/
    [4] Y. Lai and K. Ho, "Novel Online Parameter Tuning Method for Digital Boost PFC With Transition Current Mode," IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2719-2727, 2014.
    [5]Y. Lai, C. Yeh, and K. Ho, "A Family of Predictive Digital-Controlled PFC Under Boundary Current Mode Control," IEEE Transactions on Industrial Informatics, vol. 8, no. 3, pp. 448-458, 2012.
    [6]J.-W. Kim, J.-H. Yi, and B.-H. Cho, Enhanced Variable On-time Control of Critical Conduction Mode Boost Power Factor Correction Converters. 2014, pp. 890-898.
    [7]J. Kim, H. Youn, and G. Moon, "A Digitally Controlled Critical Mode Boost Power Factor Corrector With Optimized Additional On Time and Reduced Circulating Losses," IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3447-3456, 2015.
    [8]X. Ren, Z. Guo, Y. Wu, Z. Zhang, and Q. Chen, "Adaptive LUT-Based Variable On-Time Control for CRM Boost PFC Converters," IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 8123-8136, 2018.
    [9]X. Ren, Y. Wu, Z. Guo, Z. Zhang, and Q. Chen, "An Online Monitoring Method of Circuit Parameters for Variable On-Time Control in CRM Boost PFC Converters," IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1786-1797, 2019.
    [10]胡宗伯, "數位控制之交-直流功因修正前置調節器研究與設計," 成功大學電機工程學系學位論文, pp. 1-86, 2016.
    [11]<Infineon. PFC demoboard - system solution.pdf>. Available: https://www.infineon.com/dgdl/Infineon-ApplicationNote_EvaluationBoard_EVAL_800W_130PFC_C7-AN-v01_00-EN.pdf?fileId=5546d4624cb7f111014d6b42c932713c
    [12]L. Dixion, "High power factor preregulators for off-line power supply," in Unitrode switching regulated power supply design seminar manual, ed, 1988, pp. 12.1-12.16.
    [13]L6561, Enhanced Transition Mode Power Factor Corrector. Available: https://www.st.com/content/ccc/resource/technical/document/application_note/34/1a/f0/59/de/e6/40/55/CD00004002.pdf/files/CD00004002.pdf/jcr:content/translations/en.CD00004002.pdf
    [14]C. Zhou and M. M. Jovanovic, "Design trade-offs in continuous current-mode controlled boost power-factor correction circuits," in High Frequency Power Conversion Conference, ed, 1992, pp. 209-220.
    [15]L. Dixon, "Average current mode control of switching power supplies," in Unitrode Power Supply Design Seminar Handbook, ed, 1990, pp. 5.1-5.14.
    [16]P. C. Todd, "UC3854 controlled power factor correction circuit design," UNITRODE application note U-134, pp. 10-303, 1999.
    [17]M. M. Jovanovic and Y. Jang, "State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview," IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 701-708, 2005.
    [18]L. Huber, B. T. Irving, and M. M. Jovanovic, "Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters," IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 339-347, 2009.
    [19]Fairchild Semiconductor. AN-8035_Design Consideration for Boundary Conduction Mode Power Factor Correction (PFC) Using FAN7930. Available: https://www.onsemi.com/pub/Collateral/AN-8035.pdf.pdf
    [20]J. Lai and D. Chen, "Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode," in Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, 1993, pp. 267-273.
    [21]L. Dixon, "Optimizing the design of a high power switching preregulator," in Unitrode Power Supply Design Seminar Manual, 1990, ed, 1990.
    [22]B. Andreycak, "Controlled on-time, zero current switched power factor correction technique," in Unitrode Switching Regulated Power Supply Design Seminar Manual, ed, 1991, pp. 3-1-3.10.
    [23]L. Rossetto, G. Spiazzi, and P. Tenti, "Control techniques for power factor correction converters," in PEMC, 1994, vol. 94, pp. 1310-1318.
    [24]J. Sebastian, M. Jaureguizar, and J. Uceda, "An overview of power factor correction in single-phase off-line power supply systems," in Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, vol. 3, pp. 1688-1693 vol.3.
    [25]J. W. Kim, S. M. Choi, and K. T. Kim, "Variable On-time Control of the Critical Conduction Mode Boost Power Factor Correction Converter to Improve Zero-crossing Distortion," in 2005 International Conference on Power Electronics and Drives Systems, 2005, vol. 2, pp. 1542-1546.
    [26]L6562. Transition-Mode PFC Controller. Available: https://www.st.com/resource/en/datasheet/l6562.pdf
    [27]電磁干擾規範(EN55022_CISPR22_class B). Available: http://support.elmark.com.pl/getac/certyfikaty/A770_A790_CE%20EMI%20Report.pdf
    [28]S. Fu-Yuan, D. Y. Chen, W. Yan-Pei, and C. Yie-Tone, "A procedure for designing EMI filters for AC line applications," IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 170-181, 1996.
    [29]F. Yang, X. Ruan, Q. Ji, and Z. Ye, "Input differential-mode EMI of CRM boost PFC converter," Power Electronics, IEEE Transactions on, vol. 28, pp. 1177-1188, 03/01 2013.
    [30]Q. Ji, X. Ruan, and Z. Ye, "The Worst Conducted EMI Spectrum of Critical Conduction Mode Boost PFC Converter," IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1230-1241, 2015.
    [31]Fairchild Semiconductor, "Application Note AN-6027_Design of Power Factor Correction Circuit Using FAN7530."
    [32]NCP1607. Cost Effective Power Factor Controller. Available: https://www.onsemi.cn/pub/Collateral/NCP1607-D.PDF
    [33]On Semiconductor. NCL2801: Current Mode CrM Power Factor Controller. Available: https://www.onsemi.com/products/power-management/ac-dc-controllers-regulators/power-factor-controllers/ncl2801
    [34]LD7591-Transition-Mode PFC Controller with Fault Condition Protection. Available: https://www.leadtrend.com.tw/archive/doc/product/sheets/LD7591-DS-00.pdf
    [35]FAN7530 Critical Conduction Mode PFC Controller. Available: https://www.mouser.com/datasheet/2/149/FAN7530-310144.pdf
    [36]S. Tang, D. Chen, C. Huang, C. Liu, and K. H. Liu, "A new on-time adjustment scheme for the reduction of input current distortion of critical-mode power factor correction boost converters," in The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 1717-1724.
    [37]Y. Su, C. Ni, C. Chen, Y. Chen, J. Tsai, and K. Chen, "Boundary Conduction Mode Controlled Power Factor Corrector With Line Voltage Recovery and Total Harmonic Distortion Improvement Techniques," IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3220-3231, 2014.
    [38]J. Tsai, C. Chen, Y. Chen, C. Ni, C. Chen, and K. Chen, "Perturbation On-Time (POT) Technique in Power Factor Correction (PFC) Controller for Low Total Harmonic Distortion and High Power Factor," IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 199-212, 2013.
    [39]W. Cheng and C. Chen, "Optimal Lowest-Voltage-Switching for Boundary Mode Power Factor Correction Converters," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1042-1049, 2015.
    [40]Y. Chen and Y. Chen, "Line Current Distortion Compensation for DCM/CRM Boost PFC Converters," IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2026-2038, 2016.
    [41]C. Adragna, "Design-oriented analysis of ECOT-controlled DCM/CCM boundary boost PFC pre-regulators," in 2017 AEIT International Annual Conference, 2017, pp. 1-6.
    [42]C. Adragna, "THD Optimizer Circuits for PFC Pre-regulators," AN1616 STMicroelectronics, Nov, 2002.
    [43]W. Jizhe, H. Maruta, M. Matsunaga, and F. Kurokawa, A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode. 2017, pp. 1-10.
    [44]X. Ren, Y. Zhou, Z. Guo, Y. Wu, Z. Zhang, and Q. Chen, "Simple Analog-Based Accurate Variable On-time Control for Critical Conduction Mode Boost Power Factor Correction Converters," IEEE Journal of Emerging and Selected Topics in Power Electronics, pp. 1-1, 2019.
    [45]R. T. Ryan, J. G. Hayes, R. J. Morrison, and D. N. Hogan, "Improved zero-crossing distortion of a boundary-conduction-mode boost converter with digital average-current-mode control," in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 1846-1853.
    [46]Z. Guo, X. Ren, H. Gui, Y. Wu, Z. Zhang, and Q. Chen, "A universal variable on-time compensation to improve THD of high-frequency CRM boost PFC converter," in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1-6.
    [47]Z. Guo, X. Ren, Y. Wu, Z. Zhang, and Q. Chen, "A novel simplified variable on-time method for CRM boost PFC converter," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 1778-1784.
    [48]A. Bianco, C. Adragna, and G. Scappatura, "Enhanced constant-on-time control for DCM/CCM boundary boost PFC pre-regulators: Implementation and performance evaluation," in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, 2014, pp. 69-75.
    [49]STM. STCMB1_TM PFC with X-cap discharge and LLC resonant combo controller. Available: https://www.st.com/en/power-management/stcmb1.html
    [50]Texas Instruments, "UCC28063: Natural Interleaving Transition-Mode PFC Controller with Improved Audible Noise Immunity."
    [51]Z. Jinghai, L. Zhengyu, L. Zhengyu, R. Yuancheng, Q. Zhaoming, and W. Yousheng, "Novel sampling algorithm for DSP controlled 2 kW PFC converter," IEEE Transactions on Power Electronics, vol. 16, no. 2, pp. 217-222, 2001.
    [52]D. M. V. d. Sype, K. D. Gusseme, A. P. V. d. Bossche, and J. A. A. Melkebeek, "A sampling algorithm for digitally controlled boost PFC converters," IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 649-657, 2004.
    [53]S. Moon, "Auto-tuning of digitally controlled single-phase low harmonic rectifiers and inverters," 01/01 2011.
    [54]A. Prodic, D. Maksimovic, and R. W. Erickson, "Dead-zone digital controllers for improved dynamic response of low harmonic rectifiers," IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 173-181, 2006.
    [55]R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.
    [56]B. A. Mather and D. Maksimovic, "Quantization effects and limit cycling in digitally controlled single-phase PFC rectifiers," in 2008 IEEE Power Electronics Specialists Conference, 2008, pp. 1297-1303.
    [57]A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, 2003.
    [58]H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, "Modeling of Quantization Effects in Digitally Controlled DC–DC Converters," IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 208-215, 2007.
    [59]Leadtrend. LD7592 Transition-Mode PFC Controller with Fault Condition Protection. Available: https://www.leadtrend.com.tw/tw/product_info.php?id=292
    [60]Infineon IRS2505L-Boost PFC and SMPS Control IC. Available: https://www.infineon.com/dgdl/Infineon-IRS2505L-DS-v01_01-EN.pdf?fileId=5546d462533600a40153567ad42c2819
    [61]王聖銘, "具高功因之可調導通時間交流-直流升壓型轉換器," 成功大學電機工程學系學位論文, pp. 1-113, 2014.
    [62]C. Byungcho, H. Sung-Soo, and P. Hyokil, "Modeling and small-signal analysis of controlled on-time boost power-factor-correction circuit," IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 136-142, 2001.
    [63]林亨錡, "具混合導通模式操作之數位功因修正升壓型轉換器研究與設計," 成功大學電機工程學系學位論文, pp. 1-88, 2019.
    [64]牛駿憑, "數位一次側控制返馳式發光二極體驅動器之研究與設計," 成功大學電機工程學系學位論文, pp. 1-97, 2018.
    [65]Y. Zhou, X. Ren, Z. Guo, Y. Wu, Z. Zhang, and Q. Chen, "Variable On-time (VOT) Control with Phase Leading Input Current (PLIC) Compensation for 400Hz CRM Boost PFC Converters," in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 2097-2102.
    [66]X. Ren, Y. Zhou, Z. Guo, Y. Wu, Z. Zhang, and Q. Chen, "Analysis and Improvement of Capacitance Effects in 360-800Hz Variable On-time Controlled CRM Boost PFC Converters," IEEE Transactions on Power Electronics, pp. 1-1, 2019.
    [67]J. Kim and G. Moon, "Minimizing Effect of Input Filter Capacitor in a Digital Boundary Conduction Mode Power Factor Corrector Based on Time-Domain Analysis," IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3827-3836, 2016.
    [68]C. Lim, Y. Jeong, and G. Moon, "Phase leading input capacitor compensation using variable inductor with high efficiency in a CRM boost PFC," in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 852-856.
    [69]C. Zhao, J. Zhang, and X. Wu, "Phase leading input current compensation for CRM boost PFC converter," in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1-5.
    [70]STM. STNRG011 Digital combo multi-mode PFC and time-shift LLC resonant controller. Available: https://www.st.com/en/power-management/stnrg011.html

    無法下載圖示 校內:2025-03-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE