簡易檢索 / 詳目顯示

研究生: 柯廷霖
Ke, Ting-Lin
論文名稱: 極低頻電磁場對黑色素腫瘤細胞內鈣離子之影響
Effects of Extremely-low Frequency Electromagnetic Field on Intracellular Calcium Ions of B16F10 Cancer Cells
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 36
中文關鍵詞: 極低頻電磁場小鼠黑色素腫瘤癌細胞細胞內鈣離子濃度
外文關鍵詞: Extremely-low frequency electromagnetic fields, B16F10 cancer cells, Intracellular calcium concentration
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要探討極低頻電磁場,對小鼠黑色素腫瘤細胞內鈣離子以及細胞活性的影響。細胞活性主要是藉由MTT的方式來檢測。而細胞內的鈣離子濃度量測部分,則是先藉由fluo-4 AM的螢光染劑來染色,並使用高通量螢光顯微顯微鏡來拍攝並量測細胞內的鈣離子螢光值,此值和鈣離子濃度成正比。另外,鈣離子在細胞內扮演著極為重要的角色,主要為調控各種生物效應,像是細胞增生,細胞壞死,以及細胞凋亡等等。
    而為了深入探討細胞內鈣離子的濃度,以及細胞活性的關係,我們所使用的實驗頻率為舒曼波頻率7.83±0.3Hz和五倍的舒曼波 頻率39.15±0.3Hz,搭載強度為0.3±0.05 mT的電磁場。另外,磁場暴露的時間長度為48小時。結果指出,極低頻電磁場可以增加細胞內鈣離子濃度。相較於控制組,五倍的舒曼波頻率39.15±0.3Hz對於細胞內鈣離子濃度提升的效果較好,其所提升的胞內鈣濃度的比率為20.9%,另外,舒曼波頻率7.83±0.3Hz對於細胞活性的抑制效果則較好,可以達到19.2%的抑制率。由結果可以得知,細胞內的鈣離子濃度,細胞生長活性的抑制率,存在一個窗口效應。

    The paper presents the effect of extremely-low frequency (ELF) electromagnetic fields (EMF) on the intracellular calcium ions of B16F10 cancer cells (murine melanoma cancer cells), and cell viability. The cell viability was conducted by MTT assay. The intracellular calcium ions are dyed by fluo-4 AM and measured by high throughput screening (H.T.S) microscope instrument. As one of the important ions in the cells, the intracellular calcium ions play an important role on influencing several biological effects of cellular process, including cell proliferation, cell apoptosis, cell death and so on.
    In order to verify the relationship between ELF-EMF and intracellular calcium ions, the Schumann frequency (7.83 ±0.3Hz) and the 5-fold Schumann frequency (39.15± 0.3Hz) with the uniform magnetic field intensity (0.3±0.05 mT) were chosen in the experiment .The exposure time of ELF-EMF is 48hr. The result shows that ELF-EMF can increase the intracellular calcium concentration of B16F10. The 5-fold Schumann frequency (39.15± 0.3Hz) owns the best consequence of increasing 20.9 % of ratio of intracellular calcium concentration compared to control groups. The Schumann frequency (7.83 ±0.3Hz) owns the best consequence of inhibiting 19.2% of the cell viability. The result indicates that the intracellular calcium concentration effected by EMF has the biological window effect that can regulate the cell fate.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT IV CONTENTS…………………………………………………………..VI LIST OF TABLE VIII LIST OF FIGURE……………………………………………………IX CHAPTER 1 Introduction 1 1-1 Background and motivation 1 1-1-1 Background 1 1-1-2 Motivation 3 1-2 Introduction of ELF-EMF 6 1-3 Ca2+ signal with cancer cells 8 CHAPTER 2 MATERIAL AND METHOD 9 2-1 Cell line 9 2-2 EMF device design 10 2-2-1 Frequency parameter of signal 10 2-2-2 Magnetic field 12 2-3 Cell analysis method 16 2-3-1 MTT assay 16 2-3-2 Optical density value (O.D value) 16 2-3-3 Intracellular calcium fluorescence measurement 17 2-3-4 Statistical analysis 18 CHAPTER 3 EXPERIMENTAL SETUP 19 3-1 Experimental setup 19 CHAPTER 4 EXPERIMENT RESULTS AND DISCUSSION 22 4-1 Experiment results 22 4-1-1 Experiment results of the Schumann frequency 22 4-1-2 Experiment results of the 5-fold Schumann frequency 25 4-2 Discussions of experiment results 26 CHAPTER 5 CONCLUSION 31 REFERENCES 32

    [1] Hollenbach, D.F. and J.M. Herndon. Deep-Earth Reactor: Nuclear Fission, Helium, and the Geomagnetic Field. 2001, National Academy of Sciences. p. 11085.
    [2] S. J. Palmer A M. J. Rycroft A M. Cermack. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys, vol. 27, pp. 557–595, 2006.

    [3] Lacy-Hulbert, A., J.C. Metcalfe, and R. Hesketh, Biological Responses to Electromagnetic Fields. FASEB Journal: Official Publication of the Federation Of American Societies For Experimental Biology. 1998. 12(6): p. 395-420.
    [4] Nancy Wertheimer and ED Leeper. “Original Contributions Electrical Wiring Configurations and Childhood Cancer, Ajttmcan Journal of epidemiolooy,”1979 Vol. 109, No. 3
    [5] Lennart Tomenius.50-Hz Electromagnetic Environment and the Incidence of Childhood Tumors in Stockholm County, Bioelectromagnetics 7391-207 (1986)
    [6] Savitz, David A., et al. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. American journal of epidemiology 128.1 (1988): 21-38.
    [7] Washburn, E.P., et al.Residential Proximity to Electricity Transmission and Distribution Equipment and Risk of Childhood Leukemia, Childhood Lymphoma, and Childhood Nervous System Tumors: Systematic Review, Evaluation, and Meta-Analysis.Rapid Communications Oxford-New York. p. 299,1994
    [8] Hermann Berg. Problems of weak electromagnetic field effects in cell biology.Bioelectrochemistry and Bioenergetics,vol. 48, pp. 355-360, 1999.

    [9] Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal Transduction in Electrically Stimulated Bone Cells. The Journal of Bone & Joint Surgery, vol. 83, pp. 1514-1523, 2003.

    [10] Christina L. Ross, Mevan Siriwardane, Graça Almeida-Porada, Christopher D. Porada, Peter Brink, George J. Christ, Benjamin S. Harrison. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation.Stem Cell Research, vol. 15, pp. 96-108, 2015.

    [11] Tingting Wang,Yunzhong Nie,Shuli Zhao,Yuwang Han, Youwei Du, and Yayi Hou. Involvement of Midkine Expression in the Inhibitory Effectsof Low-Frequency Magnetic Fieldson Cancer Cells, Bioelectromagnetics, vol. 32, pp. 443-452, 2011.

    [12] Yunzhong Nie, Leilei Du, Yongbin Mou, Zhenjun Xu, Leihua Weng, Youwei Du, Yanan Zhu, Yayi Hou and Tingting Wang.Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation. BMC Cancer, vol. 13, pp. 582, 2013.

    [13] Carly A. Buckner, Alison L. Buckner, Stan A. Koren, Michael A. Persinger, Robert M. Lafrenie.Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels. PLoS ONE, vol. 10, 2015.

    [14] Anna KOZIOROWSKA, Przemysław SOŁEK, Lena MAJCHROWICZ, Maria ROMEROWICZ-MISIELAK .The impact of electromagnetic fields with frequency of 50 Hz on metabolic activity of cells in vitro. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017

    [15] JW Zimmerman, MJ Pennison, I Brezovich2, N Yi, CT Yang, R Ramaker, D Absher, RM Myers, N Kuster, FP Costa, A Barbault and B Pasche. Cancer cell proliferation is inhibited by specific modulation frequencies. British Journal of Cancer, vol. 106, pp. 307-313, 2012.

    [16] 王金墩,極低頻(ELF)電磁場流行病學關聯性之分析研究,台灣電力公司八十四年度研究發展專題。

    [17] 國家通訊傳播委員會,電磁波頻與與生物細胞效應
    http://memf.ncc.gov.tw/site_node.aspx?sn=80


    [18] WHO, What is Ionizing radiation?
    http://www.who.int/ionizing_radiation/about/what_is_ir/en/

    [19] Iona Miller. Schumann Resonance, Psychophysical Regulation & Psi (Part I).
    Journal of Consciousness Exploration & Research, July 2013, Volume 4, Issue 6, pp. 599-612
    [20] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 1: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum. 2002; 80:1-395.

    [21] International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to static magnetic fields. Health Phys. 2009 Apr; 96(4):504-14..

    [22] Walleczek, J. and R.P. Liburdy. Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Letters, 1990. 271(1-2): p. 157-160.

    [23] Markov, M.S., Angiogenesis, magnetic fields and 'window effects'. Cardiology,. 117(1): p. 54-56. 2010

    [24] Willem W. Overwijk, et al. B16 as a Mouse Model for Human Melanoma. Curr Protoc Immunol. May; CHAPTER: Unit–20.1. 2001

    [25] A. Das, et al. Functional expression of voltage-gated calcium channels in human melanoma. Pigment Cell Melanoma Res.. 25; 200–212 , 2012

    [26] A. Das, et al. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 26; 874–885, 2012.

    [27] A. Macià, et al. Calcium Channel Expression and Applicability as Targeted Therapies in Melanoma. BioMed Research International Volume 2015, Article ID 587135, 7 pages.

    [28] Te-Wei Yeh. Effects of Schumann Wave on B16F10 Cancer Cells. 2016

    [29] Yu-Ting Huang. Effects of Extremely-Low Frequency Electromagnetic Field on B16F10 Cancer Cells.2016

    [30] Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. "Signal Transduction in Electrically Stimulated Bone Cells," The Journal of Bone & Joint Surgery, vol. 83, pp. 1514-1523, 2003

    [31] Irena cosic, Dean Cvetkovic, Qiang Fang, Emil Jovanov, Harry Lazoura. “Human Electrophysiological Signal Responses to ELF Schumann Resonance and Artificial Electromagnetic Fields,” FME Transactions, vol. 34, pp. 93-103, 2006.

    [32] Daniel B. Lyle, Xinghua Wang, Robert D. Ayotte, Asher R. Sheppard, and W. Ross Adey. Calcium Uptake by Leukemic and Normal T-Lymphocytes Exposed to Low Frequency Magnetic Fields. Bioelectromagnetics 12:145-156 (1991)

    [33] Roderick HL, Cook SJ.Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer, vol. 8, pp. 361-375, 2008.
    [34] Natalia Prevarskaya, Halima Ouadid-Ahidouch, Roman Skryma and Yaroslav Shuba.Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Phil. Trans. R. Soc. B, vol. 10, 2013.

    [35] Markov, M.S., Angiogenesis, magnetic fields and 'window effects'. Cardiology, 117(1): p. 54-56. 2010.

    [36] M. Simko ́ , R. Kriehuber, D.G. Weiss,1 and R.A. Luben, Effects of 50 Hz EMF Exposure on Micronucleus Formation and Apoptosis in Transformed and Nontransformed Human Cell Lines, Bioelectromagnetics 19:85–91 (1998)

    [37] Lisi A, Ledda M, Rosola E, et al. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics. 2006; 27: 641–51.

    [38] Laura Teodori , et al. Static Magnetic Fields Affect Calcium Fluxes and Inhibit Stress-Induced Apoptosis in Human Glioblastoma Cells. Cytometry 49:143–149 (2002)

    [39] Denis Flipo , et al. Increased apoptosis, changes in intracellular Ca2+ , and functional alterations in lymphocytes
and macrophages after in vitro exposure
to static magnetic field.” Journal of toxicology and environmental health, part a, 54:63–76, 1998

    [40] Igor N. Sergeev. Calcium signaling in cancer and Vitamin D. J. Steroid ,Biochemistry & Mol. 2005; 97:145-151.

    [41] William A. Catterall Voltage-Gated Calcium Channels. Cold Spring Harbor Laboratory Press , 2011

    [42] A. Macià,J. Herreros, R. M. Martí, and C. Cantí . Calcium Channel Expression and Applicability as Targeted Therapies in Melanoma. BioMed Research International , Volume 2015

    [43] Das, C. Pushparaj, N. Bahí, A. Sorolla, J. Herreros, R. Pamplona, R. Vilella, X. Matias-Guiu, R. M. Martí and C. Cantí . Functional expression of voltage-gated calcium channels in human melanoma. The official journal of
INTERNATIONAL FEDERATION OF PIGMENT CELL SOCIETIES, Volume 25, Issue 4, 537, 2012

    [44] Yuan Li, et al. Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochemistry International 75 (2014) 96–104

    [45] Claudio Grassi et al. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death.” Cell Calcium 35 (2004) 307–315

    [46] Maxime Guéguinou et al. KCa and Ca2 + channels: The complex thought.Biochimica et Biophysica Acta 1843 (2014) 2322–2333

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE