簡易檢索 / 詳目顯示

研究生: 劉翰虔
Liu, Han-Chien
論文名稱: 應用於射頻電路功率放大器之非反向-升降壓兩用型直流-直流數位控制器
A Digital Non-Inverting Buck-Boost Controller for RF Power Amplifier Applications
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 121
中文關鍵詞: 非反向-升降壓兩用型轉換器導通週期不連續現象模式切換技術數位電源控制器
外文關鍵詞: Non-Inverting Buck-Boost Converter, Duty-Discontinuity, Mode-Transition Technique, Digital Power Management Controller
相關次數: 點閱:85下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個數位控制的非反向-升降壓兩用型轉換器,其架構具有大範圍的輸出電壓,可供應射頻電路功率放大器為求節能採用的可調操作電壓需求。針對此類電源轉換器在模式切換區間操作時,因導通週期不連續造成輸出電壓不穩定,本文進行了一連串詳細分析,並提出了一種全新的Duty-Locking控制概念,強制導通週期維持恆定並且藉由數位補償器的數值修正,消去輸出電壓和參考電壓之誤差訊號,讓補償器迴路和輸出電壓都能夠長時間保持在穩定操作,克服原本的缺點。將此控制架構搭配FPGA平台進行驗證,實驗結果也確實吻合理論推演。最後將驗證過的矽智財以TSMC 1P6M 0.18um Cell-Based製程下線,往電源控管系統積體化的目標邁進。

    This thesis presents a digitally controlled Non-Inverting Buck-Boost Converter, its architecture has a wide range of output voltage, which can meet the requirement of Adjustable Operating Voltage for RF Power Amplifier to achieve the Energy-Saving goals. Due to the output unstable caused by Duty-Discontinuity region when Mode-Transition, the thesis displays a series of detailed analysis of Non-Inverting Buck-Boost Converter, and then proposes a brand new concept of Mode-Transition Technique, which is called Duty-Locking control. The new control method will force the Duty-Cycle to lock in a constant value, and eliminates the errors between output and reference signal by Reference-Fixing skill, ensures that both digital controller and output voltage can keep in stable for a very long time, overcomes the shortcomings of the original topology. Experiments the Duty-Locking control with FPGA platform for verification, also the results does consistent with the expectation of theoretical deduction. Finally, the proposed digital controller has been implemented in TSMC 1P6M 0.18μm CMOS technology, integrated Power Management system into ICs for future development.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究發展 3 1.2.1 射頻電路系統採用可調操作電壓的原理簡介 3 1.2.2 非反向-升降壓兩用型直流-直流轉換器的操作演進 5 1.2.3 Duty-Discontinuity的分析 8 1.2.4 Duty-Overlapping的原理與探討 11 1.2.5 其他解決Duty-Discontinuity之文獻整理與比較 16 1.3 目標與貢獻 17 1.4 論文架構簡介 19 第二章 數位控制之切換式直流-直流轉換器簡介 21 2.1 各種常見切換式轉換器之功率級簡介與比較 21 2.2 控制器架構與工作原理 32 2.2.1 數位化電源控制器之簡介 32 2.2.2 A/D Converter 34 2.2.3 數位補償器 35 2.2.4 Digital Pulse-Width Modulator ( DPWM ) 37 2.3 Dead-Time 43 第三章 DUTY-LOCKING控制法的原理與設計 46 3.1 模式切換區間輸出電壓不穩定的原因細究 46 3.2 Duty-Locking Control的簡介 47 3.2.1 模式切換區間的偵測 49 3.2.2 修正參考電壓數值 50 3.2.3 重置LUT數位補償器之輸入數值 53 3.3 使模式切換加速穩定的暫態時間估測法 55 3.4 Duty-Locking控制法的總結 58 第四章 具DUTY-LOCKING功能的數位電源控制器FPGA系統設計 60 4.1 系統規格與架構 60 4.2 控制器運作流程 63 4.2.1 一般降壓/升壓區間的控制器運作 64 4.2.2 模式切換區間的Duty-Locking運作 66 4.3 數位PID補償器 ( Digital PID Compensator ) 68 4.4 Counter-Based DPWM 70 4.5 模式切換控制迴路 ( Transition Manager ) 72 4.6 系統層級模型建立與模擬平台 75 第五章 FPGA實作與量測 87 5.1 FPGA實驗平台簡介與PCB設計 87 5.2 量測環境設置 91 5.3 一般降壓/升壓區間量測 93 5.3.1 降壓區間 93 5.3.2 升壓區間 94 5.4 模式切換區間量測 96 5.4.1 降壓操作/模式切換區間 96 5.4.2 升壓操作/模式切換區間 97 5.4.3 降壓操作和升壓操作 互相切換 98 5.4.4 暫態時間估測法的量測驗證 99 5.5 文獻比較表 105 第六章 晶片下線 106 6.1 數位電源控制器之cell-based實現流程 106 6.2 IC模擬結果 109 6.3 晶片佈局考量和打線圖 112 6.4 IC下線規格 113 6.5 量測規劃 114 第七章 結論與展望 115 7.1 總結與貢獻 115 7.2 未來工作及研究方向 115 附錄 參考文獻 119

    [1] Nokia. Mobile Internet Battery Life: Challenges/Solutions [Online]. Available: http://forumnokia.emea.acrobat.com/p41167344/
    [2] O. García, A. de Castro, A. Soto, J.A. Oliver, J.A. Cobos and J. Cezón, "Digital Control for Power Supply of A Transmitter with Variable Reference, " in Proc. IEEE Appl. Power Electronics Conf., 2006, pp. 1411-1416.
    [3] V. Yousefzadeh, N. Wang, Z. Popovic and D. Maksimovic, "A Digitally Controlled DC/DC Converter for an RF Power Amplifier," IEEE Trans. Power Electronics, vol. 21, pp. 164-172, 2006.
    [4] R. Paul and D. Maksimovic, "Analysis of PWM Nonlinearity in Non-Inverting Buck-Boost Power Converters," in Proc. IEEE Power Electronics Spec. Conf., 2008, pp. 3741-3747.
    [5] R. Paul, L. Corradini and D. Maksimovic, "Σ-Δ Modulated Digitally Controlled Non-Inverting Buck-Boost Converter for WCDMA RF Power Amplifiers," in Proc. IEEE Appl. Power Electronics Conf., 2009, pp. 533-539.
    [6] S. Mapus, "Predictive Gate Drive Boosts Synchronous dc/dc Power Converter Efficiency," Appl. Rep. SLUA281, Texas Instruments, Apr.2003.
    [7] R. Paul, L. Corradini and D. Maksimovic, "Adaptive Non-Inverting Buck-Boost IC with On-Chip Sigma-Delta ADC for Portable Applications," in Proc. IEEE Control and Modeling for Power Electronics Conf., 2010, pp. 1-6.
    [8] R. Paul, L. Sankey, L. Corradini, Z. Popovic and D. Maksimovic, "Power Management of Wideband Code Division Multiple Access RF Power Amplifier With Antenna Mismatchng," IEEE Trans. Power Electronics, vol. 25, pp. 981-991, 2010.
    [9] Young-Joo Lee, A. Khaligh and A. Emadi, "A Compensation Technique for Smooth Transitions in a Noninverting Buck–Boost Converter," IEEE Trans. Power Electronics, vol. 24, pp. 1002-1015, 2009.
    [10] Ping-Ching Huang, Wei-Quan Wu, Hsin-Hsin Ho, Ke-Horng Chen and Gin-Kou Ma, "High Efficiency Buck-Boost Converter with Reduced Average Inductor Current (RAIC) Technique," in Proc. IEEE European Solid-State Circuits Conf., 2009, pp. 456-459.
    [11] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Kluwer, 2001.
    [12] 梁適安, 交換式電源供給器之理論與實務設計 : 全華科技圖書, 2004.
    [13] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Trans. Power Electronics, vol. 18, pp. 301-308, 2003.
    [14] X. Jinwen, et al., "A 4-ua quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications," IEEE J. Solid-State Circuits, vol. 39, pp.2342-2348, 2004.
    [15] A. Prodic, et al., "Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter," in Proc. IEEE Industrial Electronics Conf., 2001, pp. 893-898 vol.2.
    [16] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," in Proc. IEEE Computers in Power Electronics Conf., 2002, pp. 18-22.
    [17] A. Syed, et al., "Digital pulse width modulator architectures," in Proc. IEEE Power Electronics Spec. Conf., 2004, pp. 4689-4695 Vol.6.
    [18] O. Trescases, et al., "A Segmented Digital Pulse Width Modulator with Self-Calibration for Low-Power SMPS," in Proc. IEEE Electron Devices and Solid-State Circuits Conf., 2005, pp. 367-370.
    [19] B. J. Patella, et al., "High-frequency digital PWM controller IC for DC-DC converters," IEEE Trans. Power Electronics, vol. 18, pp. 438-446, 2003.
    [20] Maxim datasheet, "MAX1820: WCDMA Cellular Phone 600mA Buck Regulators," 2001.
    [21] Maxim application note AN-1205, "W-CDMA Power Supply Dramatically Improves Transmit Efficiency" -http://www.maxim-ic.com/appnotes.cfm/an_pk/1205.
    [22] Vishay Siliconix datasheet, "SI2301DS: P-Channel 1.25-W, 2.5-V MOSFET," 2003.
    [23] Vishay Siliconix datasheet, "SI2300DS: N-Channel 30-V (D-S) MOSFET," 2010.
    [24] Kyoungchoul Koo, et al., "Impact of PCB Design on Switching noise and EMI of Synchronous DC-DC buck Converter," in Proc. 2010 IEEE International Symposium on Electromagnetic Compatibility, 2010, pp. 67-71.
    [25] C.-W. Leng, et al., "An integrated GUI design tool for digitally controlled switching DC-DC converter," in Proc. IEEE Int. Conf. Communications, Circuits and Systems, 2008, pp. 1324-1327.
    [26] 劉俊男, "數位控制切換式直流-直流轉換器之補償器研究及人機介面設計工具開發," 國立成功大學電機工程學系碩士論文, 2011.
    [27] C.-H. Yang, et al., "Direct digital compensator design for switching converters," in Proc. IEEE Int. Symp. Next-Generation Electronics, 2010, pp. 143-146.
    [28] Dixon, L. "The Right-Half-Plane Zero — A Simplified Explanation," Unitrode Seminars SEM-500.
    [29] National Semiconductor. PCB Layout Considerations for Switchers [Online]. Available: http://www.national.com/AU/design/0,4706,0_74_,00.html

    下載圖示 校內:2017-02-16公開
    校外:2017-02-16公開
    QR CODE