| 研究生: |
鄧君曉 Teng, Chun-Hsiao |
|---|---|
| 論文名稱: |
數位適應性導通時間控制降壓型轉換器研究與實作 Study and Implementation of Digital Adaptive On-Time Controlled Buck Converter |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 降壓型轉換器 、數位漣波控制 、固定導通時間控制 、增強型電壓平方固定導通時間控制 、適應性導通時間控制 |
| 外文關鍵詞: | Buck Converter, Digital Ripple-Based Control, Constant On-Time Control, Enhanced V2 type Constant On-time Control, Adaptive On-Time Control |
| 相關次數: | 點閱:164 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對數位漣波控制降壓型轉換器進行研究並實現能達到負載快速暫態響應的適應性導通時間控制降壓型轉換器。數位適應性導通時間控制實現採用數位電感電流斜率感測器,可以達到快速暫態響應,同時能使系統穩定且不需要高花費的輸出電壓取樣類比數位轉換器。系統在連續導通模式下,利用參考電壓以及輸入電壓選擇不同的導通時間,使得系統可以操作在準定頻。此系統在極輕載時可以操作在不連續導通模式,以提高極輕載之轉換效率。
本系統之數位控制器應用於可攜式產品規格,實作於FPGA開發版。量測結果顯示降壓型轉換器可以操作在輸入電壓2.7伏特至4.2伏特,輸出電壓範圍可以從0.8伏特至1.2伏特。實驗結果顯示負載暫態從500毫安培至100毫安培回復時間為45微秒,100毫安培至500毫安培回復時間為55微秒。切換頻率變動範圍在連續導通模式下是500千赫至600千赫。最高的效率點在負載為50毫安培下能達到百分之九十五的轉換效率。
This thesis focuses on the study and implementation of digital ripple-based controlled buck converter to realize a buck converter with digital adaptive on-time (AOT) control that achieves a fast load transient response. By using a digital inductor current ramp estimator, the AOT control can not only allow the switching regulator to achieve a fast transient response, but also operate stably without a high cost output voltage sampling analog-to-digital converter (ADC). The digital AOT controller which adjusts the on-time according to the supply voltage and different reference voltage conditions can achieve pseudo-fixed switching frequency in the continuous conduction mode (CCM). And the conversion efficiency under ultralight-load conditions can be improved by working in the discontinuous conduction mode (DCM).
The experimental parameter of the proposed regulator is based on the portable-device application and verified by using a FPGA-based hardware platform. The measurement results show that the buck converter can operate under load current between 10 mA and 500 mA for the supply voltage from 2.7V to 4.2 V and the output voltage range from 0.8 V to 1.2 V. The Experimental result shows the load-transient response time is 45 μs when the load current decreased from 500 mA to 100 mA and 55 μs when the load current increased from 100 mA to 500 mA. The switching frequency range of variation is from 500 kHz to 600kHz at CCM. The peak efficiency is 95 % at 50 mA of the load current.
[1] 林苑卿. (2012). 遠距/可攜式醫療需求殷 高整合晶片方案鋒頭健. Available: http://www.mem.com.tw/article_content.asp?sn=1011300007
[2] Y. F. Liu and X. D. Liu, "Recent developments in digital control strategies for DC/DC switching power converters," in Proc. IEEE Int. Power Electron. and Motion Control Conf., 2009, pp. 307-314.
[3] 蕭俊竑, "具動態電壓調節功能之無電流感測多模式數位直流-直流控制器," 國立成功大學碩士論文, 2011.
[4] P. Hao and D. Maksimovic, "Digital current-mode controller for DC-DC converters," in Proc. IEEE Appl. Power Electron. Conf., 2005, pp. 899-905.
[5] K. Wang, N. Rahman, Z. Lukic, and A. Prodic, "All-digital DPWM/DPFM controller for low-power DC-DC converters," in Proc. IEEE Appl. Power Electron. Conf., 2006, p. 5 pp.
[6] M. Meola, X. Zhang, and D. Maksimovic, "Digital PFM controller with adaptive on time based on load current estimation," in Proc. IEEE Power Electron. Specialists Conf., 2008, pp. 3695-3700.
[7] 葉柏廷, "具死區時間自我探勘之無感測數位式切換穩壓器," 國立成功大學碩士論文, 2012.
[8] R. Redl and S. Jian, "Ripple-Based Control of Switching Regulators-An Overview," IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[9] 黃俊勝, "電流模式與漣波控制積體式切換穩壓器之研究與設計," 國立成功大學碩士論文, 2011.
[10] 郭致賢, "使用漣波電流合成技術之遲滯升壓穩壓器研究與設計," 國立成功大學碩士論文, 2013.
[11] 林詩梅, "具快速響應之電流模式及遲滯定頻降壓型轉換器," 國立成功大學碩士論文, 2014.
[12] 李欣倫, "具適應性電壓位置機制之漣波控制切換式降壓穩壓器研究與設計," 國立成功大學碩士論文, 2013.
[13] 王禎佑, "漣波控制切換式升壓調節器之研究與設計," 國立成功大學碩士論文, 2012.
[14] R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics ", 2nd ed: Kluwer Academic Publishers, 2011.
[15] O. SemiconductorTM, "Enhanced V2 TM Multiphase SMPS for Microprocessors," AND8045/D APPLICATION NOTE, Mar. 2001.
[16] O. SemiconductorTM, "Three-Phase Buck Controller with 5-Bit DAC," CS5323 datasheet, Apr. 2001.
[17] Y. Y. Mai and P. K. T. Mok, "A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor," IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 748-752, Aug. 2008.
[18] Y. H. Lee, S. J. Wang, and K. H. Chen, "Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor," IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829-838, Apr. 2010.
[19] J. Sun, "Characterization and performance comparison of ripple-based control for voltage regulator modules," IEEE Trans. Power Electron., vol. 21, no. 2, pp. 346-353, Mar. 2006.
[20] R. B. Ridley, "A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM," in Proc. IEEE Power Electron. Specialists Conf., 1990, pp. 382-389.
[21] A Simple Current-Sense Technique Elimination a Sense Resistor [Online]. Available: http://www.microsemi.com/document-portal/doc_view/14646-an-7-a-simple-current-sense-technique-eliminating-a-sense-resistor
[22] C. N. a. T. Tetsuo. Adaptive Constant On-Time (D-CAP™) Control Study in Notebook Application [Online]. Available: http://www.ti.com/lit/an/slva281b/slva281b.pdf
[23] H. C. Lin, B. C. Fung, and T. Y. Chang, "A current mode adaptive on-time control scheme for fast transient DC-DC converters," in Proc. IEEE Int. Symp. Circuits and Syst., 2008, pp. 2602-2605.
[24] B. Sahu, "Analysis and design of a fully-integrated current sharing scheme for multi-phase adaptive on -time modulated switching regulators," in Proc. IEEE Power Electron. Specialists Conf., 2008, pp. 3829-3835.
[25] L. TECHNOLOGY, " Fast, Wide Operating Range No RSENSE Step-Down DC/DC Controller," LTC3878 datasheet, 2009.
[26] S. L. Tian, K. Y. Cheng, F. C. Lee, and P. Mattavelli, "Small-signal model analysis and design of constant-on-time V2 control for low-ESR caps with external ramp compensation," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 2944-2951.
[27] Y. J. Chen, D. Chen, Y. C. Lin, C. J. Chen, and C. H. Wang, "A novel constant on-time current-mode control scheme to achieve adaptive voltage positioning for DC power converters," in Proc. IEEE Ind. Electron. Society Conf., 2012, pp. 104-109.
[28] Y. Y. Yan, Yan, F. C. Lee, and P. Mattavelli, "Dynamic performance comparison of current mode control schemes for Point-of-Load Buck converter application," in Proc. IEEE Appl. Power Electron. Conf., 2012, pp. 2484-2491.
[29] C. W. Chen, D. Chen, and S. S. Wang, "Tolerance analysis of a constant-on time current-mode voltage regulator with adaptive voltage position feature," in Proc. Int. Power Electron. Conf. , 2014, pp. 3938-3941.
[30] K. Y. Cheng, F. C. Lee, and P. Mattavelli, "Adaptive ripple-based constant on-time control with internal ramp compensations for buck converters," in Proc. IEEE Appl. Power Electron. Conf., 2014, pp. 440-446.
[31] T. Qian and B. Lehman, "An adaptive ramp compensation scheme to improve stability for DC-DC converters with ripple-based constant on-time control," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 3424-3428.
[32] Texas Instrument, "4.5V to 18 V Input, 4-A Synchronous Step-Down Converter with Advanced Eco-mode™," TPS56428 datasheet, Apr. 2013.
[33] C. H. Tsai, S. M. Lin, and C. S. Huang, "A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique," IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3949-3957, Aug. 2013.
[34] Texas Instrument, "TPS56x200 4.5 V to 17 V Input, 2A/3A Synchronous Step-Down Voltage Regulator in SOT-23," TPS56X200 datasheet, Aug. 2014.
[35] S. L. Tian, F. C. Lee, P. Mattavelli, K. Y. Cheng, and Y. Y. Yan, "Small-Signal Analysis and Optimal Design of External Ramp for Constant On-Time V2 Control With Multilayer Ceramic Caps," IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4450-4460, Aug. 2014.
[36] J. P. Wang, J. P. Xu, and B. c. Bao, "Analysis of Pulse Bursting Phenomenon in Constant-On-Time-Controlled Buck Converter," IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5406-5410, Dec. 2011.
[37] B. Sahu and G. A. Rincon-Mora, "An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control," IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[38] T. Qian and W. Wu, "Analysis of the ramp compensation approaches to improve stability for buck converters with constant on-time control," IET Power Electron., vol. 5, no. 2, pp. 196-204, Feb. 2012.
[39] Texas Instrument, "Ultra-Small 40-V 600-mA Constant On-Time Buck Switching Regulator," LM34919 datasheet, Feb. 2013.
[40] RICHTEK, "ACOT™ (Advanced Constant-On Time) Synchronous Step-Down Converters," RT7275/76 datasheet, Jan. 2015.
[41] Y. Y. Yan, F. C. Lee, and P. Mattavelli, "Comparison of Small Signal Characteristics in Current Mode Control Schemes for Point-of-Load Buck Converter Applications," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3405-3414, Jul. 2013.
[42] Texas Instrument, "SIMPLE SWITCHER® CONTROLLER, 42V Synchronous Step-Down," LM3150 datasheet, Mar. 2011.
[43] J. P. Wang, B. c. Bao, J. P. Xu, G. H. Zhou, and W. Hu, "Dynamical Effects of Equivalent Series Resistance of Output Capacitor in Constant On-Time Controlled Buck Converter," IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1759-1768, May. 2013.
[44] SEMTECH, "1A EcoSpeedTM Synchronous Step-Down Regulator with Optional Ultrasonic Power Save ", SC171 datasheet, Oct. 2010.
[45] L. K. Wong and T. K. Man, "Adaptive On-Time Converters," IEEE Ind. Electron. Magazine, vol. 4, no. 3, pp. 28-35, Sep. 2010.
[46] B. C. Bao, X. Zhang, J. P. Xu, and J. P. Wang, "Critical ESR of output capacitor for stability of fixed off-time controlled buck converter," Electronics Letters, vol. 49, no. 4, pp. 287-288, Feb. 2013.
[47] O. Semiconductor, "Constant Off Time PWM Current-Mode Controller for LED Applications," NCL30105 datasheet, May. 2012.
[48] R. Redl, "Small-signal high-frequency analysis of the free-running current-mode-controlled converter," in Proc. IEEE Power Electron. Specialists Conf., 1991, pp. 897-906.
[49] S. Qu, "Modeling and design considerations of V2 controlled buck regulator," in Proc. IEEE Appl. Power Electron. Conf., 2001, pp. 507-513 vol.1.
[50] W. Huang, "A new control for multi-phase buck converter with fast transient response," in Proc. IEEE Appl. Power Electron. Conf., 2001, pp. 273-279 vol.1.
[51] J. Li and F. C. Lee, "Modeling of V2 Current-Mode Control," in Proc. IEEE Appl. Power Electron. Conf., 2009, pp. 298-304.
[52] Y. Y. Yan, F. C. Lee, and P. Mattavelli, "Unified Three-Terminal Switch Model for Current Mode Controls," IEEE Trans. Power Electron., vol. 27, no. 9, pp. 4060-4070, Sep. 2012.
[53] S. L. Tian, F. C. Lee, Q. Li, and Y. Y. Yan, "Unified equivalent circuit model of V2 control," in Proc. IEEE Appl. Power Electron. Conf., 2014, pp. 1016-1023.
[54] S. Tian, F. C. Lee, P. Mattavelli, and Y. Yan, "Small-Signal Analysis and Optimal Design of Constant Frequency V2 Control," IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1724-1733, Mar. 2015.
[55] J. Li, F. C. Lee, D. Boroyevich, M. Xu, D. K. Lindner, and C. T. A. Suchicital, Current-Mode Control:Modeling and its Digital Application, 2009.
[56] STEP DOWN CONTROLLER FOR HIGH DIFFERENTIAL INPUT-OUTPUT CONVERSION [Online]. Available: http://www.st.com/web/en/resource/technical/document/datasheet/CD00003021.pdf
[57] 左仲先, "應用於切換式直流至轉器 之高性能互補金氧半控制," 國立交通大學博士論文, 2004.
[58] F. Su and W. H. Ki, "Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor," in Proc. IEEE Int. Solid-State Circuits Conf., 2009, pp. 446-447,447a.
[59] M. del Viejo, P. Alou, J. A. Oliver, O. Garcia, and J. A. Cobos, "V2IC control: A novel control technique with very fast response under load and voltage steps," in Proc. IEEE Appl. Power Electron. Conf., 2011, pp. 231-237.
[60] P. Alou, J. A. Oliver, V. Svikovic, O. Garcia, and J. A. Cobos, "Comparison of V2IC control with Voltage Mode and Current Mode controls for high frequency (MHz) and very fast response applications," in Proc. IEEE Appl. Power Electron. Conf., 2012, pp. 697-702.
[61] J. Cortes, V. Svikovic, P. Alou, J. A. Oliver, and J. A. Cobos, "Design and analysis of ripple-based controllers for buck converters based on discrete modeling and Floquet theory," in Proc. IEEE Workshop on Control and Modeling for Power Electron., 2013, pp. 1-9.
[62] Y. Y. Yan, P. H. Liu, F. C. Lee, Q. Li, and S. L. Tian, "V2 control with capacitor current ramp compensation using lossless capacitor current sensing," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2013, pp. 117-124.
[63] Y. W. Zhang, J. Zhu, W. F. Sun, and Y. B. Yi, "A fast transient response synchronous Buck converter with modified ripple-based control (MRBC) technique," in Proc. Asia Symposium on Quality Electronic Design (ASQED), 2013, pp. 14-17.
[64] J. Cortes, V. Svikovic, P. Alou, J. A. Oliver, and J. A. Cobos, "An optimization algorithm to design fast and robust analog controls for Buck converters," in Proc. IEEE Workshop on Control and Modeling for Power Electron., 2014, pp. 1-10.
[65] P. H. Liu, Y. Y. Yan, F. C. Lee, and Q. Li, "Auto-tuning and self-calibration techniques for V2 control with capacitor current ramp compensation using lossless capacitor current sensing," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 1105-1112.
[66] J. Cortes, V. Svikovic, P. Alou, J. A. Oliver, J. A. Cobos, and R. Wisniewski, "Accurate Analysis of Subharmonic Oscillations of V2 and V2Ic Controls Applied to Buck Converter," IEEE Trans. Power Electron., vol. 30, no. 2, pp. 1005-1018, Feb. 2015.
[67] W. Han and M. T. Tan, "A control algorithm to reduce steady state oscillation in digital V2 DC-DC converters," in Proc. IEEE Region 10 Conf. (TENCON), 2009, pp. 1-6.
[68] J. P. Xu, G. H. Zhou, and M. Z. He, "Improved Digital Peak Voltage Predictive Control for Switching DC-DC Converters," IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3222-3229, Aug. 2009.
[69] M. Z. He and J. P. Xu, "Digital Predictive V2 Control of Switching DC-DC Converters," in Proc. IEEE Int. Ind. Techn. Conf., 2006, pp. 116-120.
[70] B. Huang, F. C. Lee, F. F. Wang, and M. Xu, Modeling and Design of Digital Current-Mode Constant On-time Control, 2008.
[71] J. Li and F. C. Lee, "Digital current mode control architecture with improved performance for DC-DC converters," in Proc. IEEE Appl. Power Electron. Conf., 2008, pp. 1087-1092.
[72] K. Y. Cheng, F. Yu, P. Mattavelli, and F. C. Lee, "Characterization and performance comparison of digital V2-type constant on-time control for buck converters," in Proc. IEEE Workshop on Control and Modeling for Power Electron., 2010, pp. 1-6.
[73] Y. Y. Jin, J. P. Xu, and G. H. Zhou, "Constant on-time digital peak voltage control for buck converter," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 2030-2034.
[74] K. Y. Cheng, F. Yu, F. C. Lee, and P. Mattavelli, "Digital Enhanced V2-Type Constant On-Time Control Using Inductor Current Ramp Estimation for a Buck Converter With Low-ESR Capacitors," IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1241-1252, Mar. 2013.
[75] K. Y. Cheng, F. Yu, P. Mattavelli, and F. C. Lee, "Digital enhanced V2-type constant on-time control using inductor current ramp estimator for a buck converter with small ESR capacitors," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 508-513.
[76] K. Y. Cheng, S. L. Tian, F. Yu, F. C. Lee, and P. Mattavelli, "Digital Hybrid Ripple-Based Constant On-Time Control for Voltage Regulator Modules," IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3132-3144, Jun. 2014.
[77] P. H. Liu, Y. Y. Yan, P. Mattavelli, and F. C. Lee, "Digital V2 control with fast-acting capacitor current estimator," in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 1833-1840.
[78] Y. Y. Jin, J. P. Xu, G. H. Zhou, and C. B. Mi, "Small signal modeling of digital V2 control for buck converter with pulse frequency modulation," in Proc. IEEE Int. Symp. Power Electron. for Distributed Generation Syst., 2010, pp. 102-105.
[79] M. P. Chan and P. K. T. Mok, "A Monolithic Digital Ripple-Based Adaptive-Off-Time DC-DC Converter With a Digital Inductor Current Sensor," IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1837-1847, Aug. 2014.
[80] J. Li, Y. Qiu, Y. Sun, B. Huang, M. Xu, D. S. Ha, et al., "High Resolution Digital Duty Cycle Modulation Schemes for Voltage Regulators," in Proc. IEEE Appl. Power Electron. Conf., 2007, pp. 871-876.
[81] K. Y. Cheng, F. Yu, S. L. Tian, F. C. Lee, and P. Mattavelli, "Digital hybrid ripple-based constant on-time control for voltage regulator modules," in Proc. IEEE Appl. Power Electron. Conf., 2011, pp. 346-353.
[82] M. P. Chan and P. K. T. Mok, "A monolithic digitally controlled ripple-based DC-DC converter with digital inductor current sensor," in Proc. IEEE Custom Integrated Circuits Conf., 2013, pp. 1-4.
[83] C. A. Yeh and Y. S. Lai, "Digital Pulsewidth Modulation Technique for a Synchronous Buck DC/DC Converter to Reduce Switching Frequency," IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 550-561, Jan. 2012.
[84] P. H. Lan, T. J. Yang, and P. C. Huang, "An asynchronous digitally-controlled switching converter with adaptive resolution and dynamic power saving to achieve higher than 93.5% efficiency between 5mA and 250mA load," in Proc. IEEE Asian Solid State Circuits Conf. , 2011, pp. 45-48.
[85] P. H. Lan, T. J. Yang, and P. C. Huang, "A High-Efficiency, Wide Workload Range, Digital Off-Time Modulation (DOTM) DC-DC Converter With Asynchronous Power Saving Technique," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 1, pp. 67-77, Jan. 2013.
[86] R. Redl and G. Reizik, "Switched-noise filter for the buck converter using the output ripple as the PWM ramp," in Proc. IEEE Appl. Power Electron. Conf., 2005, pp. 918-924 Vol. 2.
[87] F. Dostal. Emulated ripple technique advances hysteretic switchmode supplies [Online]. Available: http://www.eetimes.com/document.asp?doc_id=1273237
[88] S. Gurram, O. Brennan, and T. Wilkerson. DC-to-DC Switching-Regulator Insights—Achieving Longer Battery Life in DSP Systems [Online]. Available: http://www.analog.com/library/analogDialogue/archives/41-12/switching_regulator.html
[89] A. DEVICE, "3 V/5 V, 2 MSPS, 8-Bit, 1-/4-/8-Channel Sampling ADCs," AD7822/AD7825/AD7829 datasheet, 2006.
[90] Ultra Low-Power, Low-Cost Comparators with 2% Reference [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX931-MAX934.pdf
[91] DE2 Development and Education Board [Online]. Available: http://www.altera.com/education/univ/materials/boards/de2/unv-de2-board.html