| 研究生: |
陳亦恆 Chen, Yi-Heng |
|---|---|
| 論文名稱: |
二葉葉片對尾流特性與風機性能之影響分析 Analysis of Influence of Two-blade rotors on Wake Characteristics and Fan Performance |
| 指導教授: |
吳毓庭
Wu, Yu-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 微型風機 、葉片轉子 、質點影像測速技術 、風機尾流 、葉尖速比 |
| 外文關鍵詞: | horizontal axis wind turbine, rotor blade, wake effect, tip speed ratio, PIV |
| 相關次數: | 點閱:59 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇文章探討影響到風機發電效率的兩個因素,葉片轉子與尾流效應。葉片轉子的性能會影響到風機的發電效率,尾流效應則會影響到下游風機的發電效率。因此了解到葉片轉子與尾流效應之間的關係有助於風電場的評估。
第一部分為微型風機之性能量測,使用固定入流風速進行風洞試驗,分別觀察葉片轉子在不同葉尖速比(TSR)情況下的發電性能以及最佳發電條件。其結果表明不同葉片轉子之間的性能差異會影響到風機的發電性能,不同葉片轉子之間在相同葉尖速比下發電效率也不相同,其中在最大發電效率時葉尖速比處於不同情況。由上述描述可以得出葉片轉子性能會影響到風機的發電性能,且葉片轉子需運行在特定葉尖速比下才能使微型風機獲得最大發電效率。
第二部分則為延續第一部分條件下去進行風機尾流拍攝,使用量測方法為質點影像測速技術(PIV),固定實驗條件為風洞入流風速以及葉尖速比,其中葉尖速比條件為最接近兩種案例之最大發電效率情況,量測主流向距離範圍為6個葉片轉子直徑距離。結果表明相同葉尖速比下尾流效應有所差異,性能較優之葉片轉子所受到的速度損失以及紊流情況皆要來的更大,影響下游範圍越廣,主要的原因來自於與風能之間的接觸較多。
由實驗結果可知葉片轉子性能越佳其發電效率越好,但是所產生的尾流效應影響範圍則會越大,這將會嚴重影響到下游風機的發電效率,因此除了考慮到風機效率最大化時,還需考慮到風機所產生的尾流效影響範圍,以確保整體風電場的發電效率。
The first part is the performance measurement of the micro-turbine. The power generation performance and optimal power generation conditions of rotor blades under different tip speed ratios (TSR) were observed. The results show that the power generation efficiency is different between different rotor blades under the same TSR. From the above description, it can be concluded that the performance of the rotor blade will affect the power generation performance of the turbine, and the rotor blade needs to run at a specific TSR to make the turbine achieve maximum power generation efficiency.
The second part is the shooting of the turbine wake. The measurement method is Particle Image Velocimetry (PIV). The fixed experimental conditions are the inflow wind speed of the wind tunnel and the TSR. TSR condition is the closest to the largest of the two cases of power generation efficiency. The results show that the wake effect is different under the same TSR. The rotor blade with better performance suffers from greater speed loss and turbulence and affects the wider downstream range.
The better the performance of the rotor blades, the better the power generation efficiency, but the larger the influence range of the wake effect will be. Therefore, in addition to considering the maximum turbine efficiency, the influence range of the wake effect generated by the turbine also needs to be considered to ensure the power generation of the entire wind farm efficiency.
[1]. André, T. and F. Guerra, Renewables 2020 global status report. Mastny, L., Brumer, L., Eds, 2020.
[2]. Bureau of Energy, M.o.E.A., R.O.C., 109年能源供給概況. 2021.
[3]. Offshore, C., Global Wind Speed Rankings. 2014.
[4]. Thomas, R.L. and W.H. Robbins, Large wind-turbine projects in the United States wind energy program. Journal of wind engineering and industrial aerodynamics, 1980. 5(3-4): p. 323-335.
[5]. Thomsen, K. and P. Sørensen, Fatigue loads for wind turbines operating in wakes. Journal of wind engineering and industrial aerodynamics, 1999. 80(1-2): p. 121-136.
[6]. Neustadter, H. and D. Spera, Method for evaluating wind turbine wake effects on wind farm performance. 1985.
[7]. Liu, M.-K. and M.A. Yocke, Siting of wind turbine generators in complex terrain. Journal of Energy, 1980. 4(1): p. 10-16.
[8]. Vermeer, L.J., J.N. Sørensen, and A. Crespo, Wind turbine wake aerodynamics. Progress in Aerospace Sciences, 2003. 39(6-7): p. 467-510.
[9]. Porté-Agel, F., M. Bastankhah, and S. Shamsoddin, Wind-turbine and wind-farm flows: a review. Boundary-Layer Meteorology, 2020. 174(1): p. 1-59.
[10]. He, R., H. Sun, X. Gao, and H. Yang, Wind tunnel tests for wind turbines: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2022. 166: p. 112675.
[11]. Dou, B., M. Guala, L. Lei, and P. Zeng, Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel. Energy, 2019. 166: p. 819-833.
[12]. Zhang, W., C.D. Markfort, and F. Porté-Agel, Wind-turbine wakes in a convective boundary layer: A wind-tunnel study. Boundary-Layer Meteorology, 2013. 146(2): p. 161-179.
[13]. Choi, C.-K. and D.-K. Kwon, Wind tunnel blockage effects on aerodynamic behavior of bluff body. Wind Struct Int J, 1998. 1(4): p. 351-364.
[14]. Scharnowski, S. and C.J. Kähler, Particle image velocimetry-Classical operating rules from today’s perspective. Optics and Lasers in Engineering, 2020. 135: p. 106185.
[15]. Li, H., Y. Zhao, J. Liu, and J. Carmeliet, Physics-based stitching of multi-FOV PIV measurements for urban wind fields. Building and Environment, 2021. 205: p. 108306.
[16]. Xiao, J.-p., J. Wu, L. Chen, and Z.-y. Shi, Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics, 2011. 32(6): p. 729-738.
[17]. Cardesa, J., T. Nickels, and J. Dawson, 2D PIV measurements in the near field of grid turbulence using stitched fields from multiple cameras. Experiments in fluids, 2012. 52(6): p. 1611-1627.
[18]. Carmer, C.F.v., A. Heider, A. Schröder, R. Konrath, J. Agocs, A. Gilliot, and J.-C. Monnier, Evaluation of large-scale wing vortex wakes from multi-camera PIV measurements in free-flight laboratory, in Particle Image Velocimetry. 2007, Springer. p. 377-394.
[19]. Betz, A., Wind-energie und ihre ausnutzung durch windmühlen. Vol. 2. 1926: Vandenhoeck & Ruprecht.
[20]. Wu, Y.-T., C.-Y. Lin, and C.-M. Hsu, An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios. Energies, 2020. 13(8): p. 2113.
[21]. Talavera, M. and F. Shu, Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel. Renewable energy, 2017. 109: p. 363-371.
[22]. Wang, Z., A. Ozbay, W. Tian, and H. Hu, An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy, 2018. 147: p. 94-109.
[23]. Chamorro, L.P. and F. Porte-Agel, Turbulent flow inside and above a wind farm: a wind-tunnel study. Energies, 2011. 4(11): p. 1916-1936.
[24]. Wilson, R.E., P. Lissaman, and S.N. Walker, Aerodynamic performance of wind turbines. 1976, Oregon State Univ., Corvallis (USA).
[25]. Walchner, O., Aerodynamic Theory. A General Review of Progress. Under a Grant of the Guggenheim Fund for the Promotion of Aeronautics hrsg. vwf durand, Vol. IV, A. Betz, Applied Airfoil Theory, C. Wieselsberger, Airplane Body (Non‐Lifting System) Drag and Influence on Lifting System, H. Glauert, Airplane Propellers, C. Koning, Influence of the Propeller on other Parts of the Airplane Structure. XVI+ 434 S., 321 Abb. Berlin 1935, Verlag Julius Springer. Preis geb. 34 M. 1937, Wiley Online Library.
[26]. Maalawi, K. and M. Badr, A practical approach for selecting optimum wind rotors. Renewable energy, 2003. 28(5): p. 803-822.
[27]. Lanzafame, R.a. and M. Messina, Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory. Renewable energy, 2007. 32(14): p. 2291-2305.
[28]. Kamada, Y., T. Maeda, J. Murata, and N. Yusuke, Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions. Energy, 2016. 109: p. 703-711.
[29]. 徐慶芳, 自製Laskin噴嘴之粒徑特性分析研究, in 工程科學系. 2021, 國立成功大學: 台南市. p. 58.
[30]. Keane, R.D. and R.J. Adrian, Theory of cross-correlation analysis of PIV images. Applied scientific research, 1992. 49(3): p. 191-215.
[31]. Keane, R.D. and R.J. Adrian, Optimization of particle image velocimeters. I. Double pulsed systems. Measurement science and technology, 1990. 1(11): p. 1202.