簡易檢索 / 詳目顯示

研究生: 李瑋儒
Li, Wei-Ju
論文名稱: 應用於自行車訓練器之內嵌式繞線同心磁性齒輪電機
Coaxial Magnetic Gear Machine with Embedded Winding for Application of Bicycle Trainer
指導教授: 蔡明祺
Tsai, Mi-Ching
共同指導教授: 吳益彰
Wu, Yi-Chang
黃柏維
Huang, Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 磁性齒輪電機電機設計諧波調製效應內嵌式繞線磁性積層製造技術
外文關鍵詞: Magnetic gear machine, Motor design, Harmonic modulating effect, Embedded winding, Additive manufacturing
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討一體式磁性齒輪電機,設計概念是基於同心式磁性齒輪之雙氣隙結構。其內部具有定子繞線與磁性齒輪兩部分,可同時省略傳統齒輪箱之體積並保留減速功能。此類高功率密度之設計,適用於需減速機之工作場合,如風力發電與車輛載具等。一般自行車訓練台為高扭矩之應用場域,常設計減速機將高扭矩轉換為低扭矩之操作點。因此同心式磁性齒輪電機對於此種負載環境極為合適。
    然而,此類電機因雙氣隙結構,於功率傳遞時,易產生漏磁導致損失較高。如何有效降低整體損失成為本文之設計重點。本文提出基於磁性積層製造技術之調磁鐵芯。透過內嵌溝槽之設計,可在維持磁通量與磁通密度不變的前提下,減少繞線的使用量與無效端部繞組,藉以降低銅損、提升功率密度與效率。本研究將以實作與模擬進行驗證比較。

    The concept of the integrated magnetic gear machine in this paper is based on dual air gap coaxial magnetic gear structure. With magnetic gear and winding simultaneously, the space of the traditional gear box can be saved while the functionality of gear ratio is still maintained. Such a high power density concept can be applied to the situation that requires gear boxes, for example, wind power generation, vehicles and so on. Generally, bicycle trainers are high torque applications and usually designed to contain another gear box in order to transfer the operating point from high torque to low torque. Therefore, coaxial magnetic gear machine with embedded winding especially suits for this application.
    However, this kind of machine contains dual air gap structure which causes high loss from flux leakage. Therefore, how to reduce entire loss becomes a key point. This paper proposes modulating segments by using additive manufacturing, which contain trenches. Based on a premise of maintaining flux density, with the reduction of winding usage and end turn space, the amount of copper and copper loss decrease, while power density and machine efficiency increase.

    中文摘要 I Abstract II 誌謝 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 機械行星齒輪與同心式磁性齒輪比較 3 1.2.2 同心式磁性齒輪電機 5 1.2.3 功率分流 9 1.2.4 調磁鐵芯之固定 11 1.3 論文架構 13 第二章 同心式磁性齒輪電機原理介紹 15 2.1 諧波調製效應 15 2.1.1 諧波調製前內外層之氣隙磁通分布 15 2.1.2 諧波調製後永磁磁極對內外氣隙磁通分布之影響 18 2.2 繞線因數 27 2.3 集中繞線與分佈繞線 32 第三章 設計流程 36 3.1 規格選定與減速比 37 3.2 極/槽數挑選 38 3.2.1 同心磁性齒輪特性 38 3.2.2 繞線因數 39 3.2.3 頓轉扭矩因數 40 3.3 磁鐵尺寸及展開角 42 3.4 調磁鐵芯之3D構型 43 第四章 實作、模擬分析與實驗量測 48 4.1 馬達實作 48 4.1.1 整體結構設計 48 4.1.2 調磁鐵芯 50 4.2 模擬分析與比較 53 4.2.1 磁通之諧波調製模擬驗證 53 4.2.2 電機特性模擬與比較 59 第五章 結論與未來建議 64 5.1 結論 64 5.2 未來建議 65 參考文獻 66  

    [1] J. Bai, P. Zheng, C. Tong, Z. Song and Q. Zhao, "Characteristic Analysis and Verification of the Magnetic-Field-Modulated Brushless Double-Rotor Machine," in IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4023-4033, July 2015.
    [2] K. T. Chau, D. Zhang, J. Z. Jiang, C. Liu and Y. Zhang, "Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles," in IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2504-2506, June 2007.
    [3] M. Chen,K. T. Chau, C. H. T. Lee, and C. H. Liu, “Design and Analysis of a New Axial-Field Magnetic Varialbe Gear Using Pole-Changing Permanent Magnets,” Progress in Electomagnetics Research-Pier, vol. 153, pp.23-32, 2015.
    [4] C. Liu, K. T. Chau and Z. Zhang, "Novel Design of Double-Stator Single-Rotor Magnetic-Geared Machines," in IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4180-4183, Nov. 2012.
    [5] D. Thyroff, S. Meier and I. Hahn, "Modeling integrated magnetic gears using a magnetic equivalent circuit," IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015, pp. 2904-2908.
    [6] 中華民國交通部,“中華民國交通部,”[Online]. Available: https://www.motc.gov.tw/ch/index.jsp.
    [7] 台灣自行車輸出業同業公會, “台灣自行車產業2018年前三季出口實績,” 台灣自行車輸出業同業公會, 台北市, 2018.
    [8] Wordsun,“Wordsun,”[Online]. Available: http://www.wordsun.com/news/release/num-helps-taiwanese-machine-tool-company-to-automate-production-of-involute-and-cycloidal-gears-for-robotics/tw
    [9] K. Atallah, S. D. Calverley and D. Howe, "Design, analysis and realisation of a high-performance magnetic gear," in IEE Proceedings - Electric Power Applications, vol. 151, no. 2, pp. 135-143, 9 March 2004.
    [10] M. C. Gardner, M. Johnson and H. A. Toliyat, "Comparison of Surface Permanent Magnet Coaxial and Cycloidal Radial Flux Magnetic Gears," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, 2018, pp. 5005-5012.
    [11] C. V. Pop and D. Fodorean, "Modelling of an in-wheel motor with integrated magnetic gear for electric vehicle applications," 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, 2016, pp. 240-244.
    [12] L. Zhang and Q. Ding, "Design and 2D finite element analysis for a novel magnetic gear integrated brushless permanent machine," 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, 2016, pp. 1726-1730.
    [13] C. V. Pop and D. Fodorean, "In-wheel motor with integrated magnetic gear for extended speed applications," 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016, pp. 413-418.
    [14] T. Zou, R. Qu, D. Li and D. Jiang, "A novel doubly magnetic geared permanent magnet machine," 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, FL, 2016, pp. 1-1.
    [15] H. Shin and J. Chang, "Comparison of Radial Force at Modulating Pieces in Coaxial Magnetic Gear and Magnetic Geared Machine," in IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1-4, March 2018, Art no. 8101904.
    [16] 蔡宏偉,“分析及實現小型化磁性齒輪電機高扭矩密度之設計,”國立成功大學電機工程學系碩士論文, 2018.
    [17] Y. Shi, J. Wei and L. Jian, "Parallel-path power flows in magnetic-geared permanent magnet machines with sandwiched armature stator," in Chinese Journal of Electrical Engineering, vol. 3, no. 1, pp. 16-26, 2017.
    [18] L. Jian, W. Gong, G. Xu, J. Liang and W. Zhao, "Integrated Magnetic-Geared Machine With Sandwiched Armature Stator for Low-Speed Large-Torque Applications," in IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4184-4187, Nov. 2012.
    [19] Z. Deng, L. Jian, G. Peng, Y. Shi and J. Wei, "Modeling of Magnetic-Geared Permanent Magnet Machines with Sandwiched Armature Stator," 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, 2016, pp. 1-6.
    [20] Z. Q. Zhu, M. F. Khatab, H. Li and Y. Liu, "A Novel Axial Flux Magnetically Geared Machine for Power Split Application," in IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 5954-5966, Nov.-Dec. 2018.S. J. Kim, E. J. Park, S. Y. Jung and Y.
    [21] J. Kim, "Torque transfer efficiency estimation of the magnetic gear considering eddy current loss," 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, 2016, pp. 338-341.
    [22] M. C. Tsai and L. H. Ku, "3-D Printing-Based Design of Axial Flux Magnetic Gear for High Torque Density," in IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015, Art no. 8002704.
    [23] Z. P. Xia, Z. Q. Zhu and D. Howe, "Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines," in IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 1864-1872, July 2004.
    [24] Y. Liu, J. Ou and M. Noe, "A Large-Scale Superconducting DC Wind Generator Considering Concentrated/Distributed Armature Winding," in IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, June 2017, Art no. 5200405.
    [25] 黃健敉,“應用於壓縮機之同步磁阻馬達設計與開發,”國立成功大學電機工程學系碩士論文, 2015.
    [26] 茆尚勳, “直驅式跑步機用直流無刷馬達之設計,” 國立成功大學機械工程學系碩士論文, 2002.
    [27] "ME-mechanicalengineering," [Online]. Available: https://me-mechanicalengineering.com/belt-drives/.
    [28] Z. Q. Zhu and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," 1997 IEEE International Electric Machines and Drives Conference Record, Milwaukee, WI, USA, 1997, pp. MA1/3.1-MA1/3.3.

    無法下載圖示 校內:2024-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE