簡易檢索 / 詳目顯示

研究生: 林祐寬
Lin, Yu-Kuan
論文名稱: 基於輻射基底神經網路可變區塊紋理壓縮演算法
Variable-Size Block Texture Compression Using Radial Basis Function Neural Network
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 紋理壓縮紋理快取
外文關鍵詞: texture compression, texture cache, neural network
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們提出新的紋理壓縮演算法以及對應的紋理快取設計。針對
    紋理中不同的顏色變化特性分別使用兩種編碼方法,顏色平滑部分使用類神
    經網路模型幫助紋素值的近似,將其類神經網路模型編碼成固定長度的位元
    串。而顏色變化劇烈的邊界部分則使用傳統編碼方法ETC2。所提出的演算法
    可以在不影響影像編碼品質下提供更好的壓縮率。平均比起單純使用ETC2 可
    以提升約0.112dB PSNR 同時約可以提升15% 壓縮率。此外,配合所提出的
    演算法在系統應用中我們設計FIFO 暫存類神經網路的編碼位元串,可以減少
    對紋理快取讀取的時間。由於較好的壓縮率及區塊編碼特性在繪圖時,比起
    單純使用ETC2 可以有效減少向下層記憶體(DRAM) 讀取壓縮紋理資料時間,
    約為67.6%。配合FIFO 的設計整體系統運算時間(包含解壓縮) 約為97.1%。

    For modern Graphics Processing Units (GPU), the texture mapping is introduced to
    reduce the transmission bandwidth and save the memory usage. Compared to ren-
    dering a whole 3D image directly, using texture mapping technique is not only more
    efficient but also lowering the computing complexity. Therefore, texture compres-
    sion plays an important role in modern GPU rendering. In this paper, we propose
    to combine Radial Basis Function Neural Network (RBFNN) with the traditional
    block based texture compression method Ericsson Texture Compression 2 (ETC2).
    We first cut a texture into several blocks with different sizes. Then, for each block,
    we choose to encode either by the ETC2 or by the neural network according to the
    texture property of the block. For the blocks with low frequency texture, we use
    the function approximation of RBFNN for better compression ratio. On the other
    hand, we use ETC2 in the high frequency area to keep the texture quality. Experi-
    ment results shows an improvement over ETC2 by 0.112 dB in average PSNR, with
    a reduction of about 15% in average bit rate. And because of the better compression
    ratio and block property, we can improve the texture cache hit rate about 1.43%, and
    further improve about 2.9% total system rendering cycles in average compare with
    ETC2.
    Keywords: Texture compression, Texture cache, Neural network

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. VIII 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXV 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-3 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1-4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 相關研究背景介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2-1 向量量化演算法(Vector Quantization Algorithm) . . . . . . . . . . . 6 2-2 S3 紋理壓縮(S3 Texture Compression) . . . . . . . . . . . . . . . . . 9 2-3 愛立信紋理壓縮(Ericsson Texture Compression) . . . . . . . . . . . 10 2-3-1 PACKMAN 紋理壓縮. . . . . . . . . . . . . . . . . . . . . . 10 2-3-2 iPACKMAN 紋理壓縮(ETC1) . . . . . . . . . . . . . . . . . 11 2-3-3 Ericsson Texture Compression 2 . . . . . . . . . . . . . . . . 14 2-4 類神經網路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2-4-1 感知器(Perceptron) . . . . . . . . . . . . . . . . . . . . . . . 19 2-4-2 多層感知器(Multilayer Perceptrons) . . . . . . . . . . . . . 21 2-4-3 輻射基底類神經網路(Radial Basis Function Neural Network) 23 3 相關文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3-1 色彩單元壓縮. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3-2 PowerVR 紋理壓縮. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3-3 適應性可伸縮紋理壓縮. . . . . . . . . . . . . . . . . . . . . . . . . 27 3-4 應用線性回歸之紋理壓縮(VRF) . . . . . . . . . . . . . . . . . . . . 29 3-5 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 可變動區塊基於輻射基底神經網路紋理壓縮法與紋理快取設計. . . . 32 4-1 利用輻射基底神經網路近似紋理區塊. . . . . . . . . . . . . . . . . 33 4-2 壓縮流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4-2-1 編碼流程及限制. . . . . . . . . . . . . . . . . . . . . . . . . 38 4-2-2 編碼位元串架構. . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . 41 4-3 解碼硬體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4-3-1 輸入層歐幾里得距離運算. . . . . . . . . . . . . . . . . . . 45 4-3-2 隱層高斯激活函數. . . . . . . . . . . . . . . . . . . . . . . 46 4-3-3 全連接層與輸出層. . . . . . . . . . . . . . . . . . . . . . . 51 4-4 紋理快取設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 實驗結果與分析比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5-1 編碼效能及解碼硬體數據. . . . . . . . . . . . . . . . . . . . . . . . 58 5-1-1 紋理壓縮演算法之效能比較. . . . . . . . . . . . . . . . . . 58 5-1-2 解碼硬體數據. . . . . . . . . . . . . . . . . . . . . . . . . . 69 5-2 紋理壓縮演算法及紋理快取效能分析. . . . . . . . . . . . . . . . . 70 6 結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6-1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6-2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    [1] E. Delp and O. Mitchell, “Image compression using block truncation coding,”
    IEEE Transactions on Communications, vol. 27, pp. 1335–1342, Sep 1979.
    [2] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
    and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
    1958.
    [3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
    by error propagation,” tech. rep., DTIC Document, 1985.
    [4] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional
    interpolation and adaptive networks,” tech. rep., Royal Signals and Radar
    Establishment Malvern (United Kingdom), 1988.
    [5] Y. Song, J. Wang, L.-Y. Wei, and W. Wang, “Vector regression functions for
    texture compression,” ACM Transactions on Graphics (TOG), vol. 35, no. 1,
    p. 5, 2015.
    [6] H. G. Levkin, “ImageProcessing/VideoCodecs/Programming. test still images.
    [online]. aviable: http://www.hlevkin.com/default.htmltestimages,” 2004.
    [7] R. Gonzalez, R. Woods, and S. Eddins, “Image databases, http://www. imageprocessingplace.
    com,” retrieved on,(October 2006), 2010.
    [8] A. C. Beers, M. Agrawala, and N. Chaddha, “Rendering from compressed textures,”
    in Proceedings of the 23rd annual conference on Computer graphics and
    interactive techniques, pp. 373–378, ACM, 1996.
    [9] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compression standard.
    Springer Science & Business Media, 1992.
    [10] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
    IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.
    [11] K. I. Iourcha, K. S. Nayak, and Z. Hong, “System and method for fixed-rate
    block-based image compression with inferred pixel values,” Sept. 21 1999. US
    Patent 5,956,431.
    [12] J. Ström and T. Akenine-Möller, “Packman: texture compression for mobile
    phones,” in ACM SIGGRAPH 2004 Sketches, p. 66, ACM, 2004.
    [13] J. Ström and T. Akenine-Möller, “i packman: High-quality, low-complexity
    texture compression for mobile phones,” in Proceedings of the ACM SIGGRAPH/
    EUROGRAPHICS conference on Graphics hardware, pp. 63–70,
    ACM, 2005.
    [14] J. Ström and M. Pettersson, “Etc 2: texture compression using invalid combinations,”
    2007.
    [15] C. Van Der Malsburg, “Frank rosenblatt: Principles of neurodynamics: perceptrons
    and the theory of brain mechanisms,” in Brain Theory, pp. 245–248,
    Springer, 1986.
    [16] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and singular
    value decomposition,” Biological cybernetics, vol. 59, no. 4, pp. 291–294,
    1988.
    [17] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations
    by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.
    [18] G. Campbell, T. A. DeFanti, J. Frederiksen, S. A. Joyce, and L. A. Leske, “Two
    bit/pixel full color encoding,” in ACM SIGGRAPH Computer Graphics, vol. 20,
    pp. 215–223, ACM, 1986.
    [19] S. Fenney, “Texture compression using low-frequency signal modulation,” in
    Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
    hardware, pp. 84–91, Eurographics Association, 2003.
    [20] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson, “Adaptive scalable
    texture compression,” in Proceedings of the Fourth ACM SIGGRAPH/Eurographics
    conference on High-Performance Graphics, pp. 105–114, Eurographics
    Association, 2012.
    [21] M. J. Schulte and J. E. Stine, “Approximating elementary functions with symmetric
    bipartite tables,” IEEE Transactions on Computers, vol. 48, no. 8,
    pp. 842–847, 1999.
    [22] P.-T. P. Tang, “Table-driven implementation of the logarithm function in
    ieee floating-point arithmetic,” ACM Transactions on Mathematical Software
    (TOMS), vol. 16, no. 4, pp. 378–400, 1990.
    [23] S. A. Tawfik and H. A. Fahmy, “Algorithmic truncation of minimax polynomial
    coefficients,” in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006
    IEEE International Symposium on, pp. 4–pp, IEEE, 2006.
    [24] R. Franzen, “Kodak lossless true color image suite: Photocd pcd0992. available:
    http://www.imageprocessingplace.com/root files v3/image databases.htm,”
    2002.

    無法下載圖示 校內:2019-10-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE