| 研究生: |
江長陽 Jiang, Chang-Yang |
|---|---|
| 論文名稱: |
Mg2TiO4陶瓷材料之微波介電特性改善與應用 Improved Microwave Dielectric Properties and Applications of Mg2TiO4 Ceramic Material |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 陶瓷 、濾波器 |
| 外文關鍵詞: | ceramic, filter |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以Mg2TiO4為主體,探討Mg2TiO4、Mg2(Ti0.95Sn0.05)O4和(Mg0.95Zn0.05)2TiO4 三種介電材料之共振頻率溫度漂移係數改善方法。為了將其負的共振頻率溫度飄移係數調整至趨近於零,我們添加具正值共振頻率溫度飄移係數的鈣鈦礦材料Ca0.8Sr0.2TiO3(+991 ppm/°C)及Ca0.8Sm0.4/3TiO3(+400 ppm/°C)。經由實驗的結果,我們得知0.85(Mg0.95Zn0.05)2TiO4–0.15Ca0.8Sm0.4/3TiO3有最佳的微波介電特性,其 約為19.92、Q×f約為127,000 GHz (at 9.5 GHz)及τf約為–0.8 ppm/°C。
接下來,我們設計和實作一操作在2.4 GHz的帶通濾波器,濾波器主要由兩個U型諧振器經由電場耦合的方式來組成,並利用零度饋入線在其通帶的左右兩側各產生一零點,最後再加入一開路殘段來抑制其倍頻響應。我們將設計好的電路實作在FR4、氧化鋁和0.85(Mg0.95Zn0.05)2TiO4–0.15Ca0.8Sm0.4/3TiO3基板上,並量測其各自的頻率響應,經由量測的結果得知,印刷在0.85(Mg0.95Zn0.05)2TiO4–0.15Ca0.8Sm0.4/3TiO3基板上的濾波器擁有最低的插入損耗以及最小的原件尺寸,由此可說明利用高介電係數及高品質因數的材料確實能達到降低損耗和縮小面積的需求。
The improvement of τf of Mg2TiO4, Mg2(Ti0.95Sn0.05)O4 and (Mg0.95Zn0.05)2TiO4 base on Mg2TiO4 structure have been investigated. In order to adjust their negative τf, Ca0.8Sr0.2TiO3 and Ca0.8Sm0.4/3TiO3 perovskite which have positive τf had been add. The experiment result showed that 0.85(Mg0.95Zn0.05)2TiO4–0.15Ca0.8Sm0.4/3TiO3 have the best microwave dielectric properties, it’s ~ 19.92, Q×f ~ 127,000 GHz (measured at 9.5 GHz) and τf ~ –0.8 ppm/°C.
Then, we design and fabricate a microwave band-pass patch filter which resonant at 2.4 GHz. The filter was constructed by two U shape resonators using electric coupling. To product two transmission zeros upper and lower the resonant frequency, zero-degree feed tapping feed lines were be used. Finally, an open-stub was added to suppress the spurious response. The pattern was printed on FR4, Al2O3 and 0.85(Mg0.95Zn0.05)2TiO4–0.15Ca0.8Sm0.4/3TiO3 substrates. By measured their frequency responses, filer fabricated on 0.85(Mg0.95Zn0.05)2TiO4–0.15Ca0.8Sm0.4/3TiO3 substrate have the lowest insertion loss and the minimum size, which point out that dielectric material with high dielectric constant and high quality factor can improve the loss and reduce filter’s size.
[1] H. M. O’bryan, J. Thomson, J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2] G. Wolfram, H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” J. J. Appl. phys., 33 [9B] 5466–5470 (1994).
[4] Y. Ohishi, Y. Miyauchi, H. Ohsato, K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment,” J. J. Appl. phys., 43 [6A] L749–L751 (2004).
[5] C. L. Huang, T. J. Yang, C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a Compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6] W. F. Smith, 劉品均(譯), 施佑蓉(譯), “材料科學與工程,” 第三版, 高立圖書, (2005).
[7] J. W. Cahn, R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[8] W. J. Huppmann, G. Petzow, “Sintering Processes,” Plenum Press, (1979).
[9] R. M. German, “Liquid Phase Sintering,” Plenum Press, (1985).
[10] J. H. Jean, C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
[11] 張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).
[12] 鄭景太, “淺談高頻低損失介電材料,” 工業材料, 176期, (2001).
[13] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
[14] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 391–398 (1939).
[15] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
[16] D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
[17] D. Kajfez, A. W. Glisson, J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[18] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
[19] D. Kajfez and P. Guillon, “Dielectric Resonators,” Artech House (1989).
[20] W. A. Deer, R. A. Howie, J. Zussman, “An Introduction to the Rock-forming Minerals,” Second Edition, (1992).
[21] N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, G. de With, “Structural, Elastic, Thermophysical and Dielectric Properties of Zinc Aluminate (ZnAl2O4),” J. Eur. Ceram. Soc., 24 [8] 2417–2424 (2004).
[22] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
[23] 吳朗, “電工材料,” 滄海書局, (1998).
[24] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits,” McGraw-Hill, (1990).
[25] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
[26] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
[27] J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” John Wiley & Sons, (2001).
[28] G. Kompa, “Practical Microstrip Design and Applications,” Artech House, (2005).
[29] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
[30] E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[31] C. M. Tsai, S. Y. Lee, C. C. Tsai, “Performance of a Planar Filter Using a 0 Feed Structure,” IEEE Trans. Microwave Theory Tech., 50 [10] 2362–2367 (2002).
[32] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[33] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[34] P. Wheless, D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[35] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[36] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89 [11] 3441–3445 (2006).
[37] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, D. S. Cannell, “Structure–Microwave Property Relations in (SrxCa(1-x))n+1TinO3n+1,” J. Eur. Ceram. Soc., 21 [10–11] 1723–1726 (2001).
[38] C. L. Huang and J. Y. Chen, “High-Q Microwave Dielectrics in the (Mg1−xCox)2TiO4 Ceramics,” J. Am. Ceram. Soc., 92 [2] 379–383 (2009).
[39] C. L. Huang and J. Y. Chen, “Low-Loss Microwave Dielectrics Using Mg2(Ti1–xSnx)O4 (x=0.01–0.09) Solid Solution,” J. Am. Ceram. Soc., 92 [10] 2237–2241 (2009).
[40] C. L. Huang and S. S. Liu, “Low-Loss Microwave Dielectrics in the (Mg1–xZnx)2TiO4 Ceramics,” J. Am. Ceram. Soc., 91 [10] 3428–3430 (2008).
[41] Y. B. Chen, C. L. Huang, S. T. Tasi, “New Dielectric Material System of x(Mg0.95Zn0.05)TiO3–(1–x)Ca0.8Sm0.4/3TiO3 at Microwave Frequency,” Materials Letters, 62 [16] 2454–2457 (2008).
校內:2015-01-28公開