簡易檢索 / 詳目顯示

研究生: 楊崴壬
Yang, Wei-Ren
論文名稱: 碳化矽功率元件應用於永磁同步馬達驅動器之寄生參數分析
Parasitic Parameter Analysis of Permanent Magnet Synchronous Motor Drive Based on SiC Power Transistor
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: 碳化矽功率元件寄生參數馬達驅動器
外文關鍵詞: Silicon Carbide Power Components, Parasitic Parameter, Motor Driver
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,由於碳化矽功率元件的高切換頻率、高工作溫度,及低導通電阻等優點,使其逐漸取代原本以矽功率元件為主之馬達驅動器。雖然碳化矽元件擁有高切換頻率之優點,但同時極大di/dt與dv/dt會影響功率元件誤動作及損毀,因此電路板上之寄生參數將成為首要處理項目。本論文之目標,係以探討碳化矽功率元件應於永磁同步馬達驅動器之寄生參數分析,再透過電路板之總寄生電感及負載大小決定碳化矽功率元件之切換頻率的範圍。
      本論文使用ANSYS Q3D/Simplorer兩種軟體,前者主要分析電路板中寄生參數、電流分佈與電流密度等是否符合規範,後者整合電路板之SPICE模型、閘極驅動器與碳化矽功率元件之SPICE模型,建立一套高精準度的碳化矽功率元件之永磁同步馬達驅動器電路,且透過模擬雙脈衝測試可求得實際元件上的閘-源極電壓、汲-源極電壓與汲-源極電流,並從模擬結果分析di/dt與dv/dt影響及提出改善方法。本論文亦製作一具碳化矽功率元件之1.5 kW永磁同步馬達驅動器,以實測驗證模擬所得到之分析結果。

      In recent years, silicon carbide (SiC) power transistor has gradually replaced traditional silicon power transistor in motor driver, due to the high switching frequency, high operating temperature, and low on-resistance of silicon carbide power transistor. Although the silicon carbide power transistor has the advantage in high switching frequency, the large di/dt and dv/dt will affect the malfunction and damage of the power component; in this case, the parasitic parameter on the circuit board will become the primary issue. This thesis presents the parasitic parameter analysis of permanent magnet synchronous motor driver based on silicon carbide power transistor.
      There are two pieces of software (ANSYS Q3D/Simplorer) applied in this thesis. The former mainly analyzes the parasitic parameters, current distribution and current density of the circuit board while the latter integrates the SPICE model of the circuit board, the SPICE model of the gate driver and silicon carbide power transistor to establish a high-precision permanent magnet synchronous motor driver circuit of silicon carbide power transistor. The gate-source voltage, drain-source voltage, and drain-source current on the actual device can be obtained through the simulation of the double pulse test, and the effects of di/dt and dv/dt can be analyzed from the results.

    摘要 II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVIII 符號表 XXIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 6 1.2.1 寄生參數對碳化矽功率元件之影響 6 1.2.2 dv/dt對碳化矽功率元件之影響 8 1.2.3 di/dt對碳化矽功率元件之影響 12 1.2.4 碳化矽功率元件應用於永磁同步馬達驅動器之挑戰 17 1.3 研究動機與目的 22 1.4 論文架構 24 第二章 永磁同步馬達之數學模型與磁場導向控制法 25 2.1 永磁同步馬達之三相座標數學模型 25 2.2 座標軸轉換 27 2.3 旋轉座標軸系統之馬達數學模型 29 2.4 磁場導向控制 31 2.4.1 空間向量脈波調變法 32 2.4.2 磁場導向控制之電流流通路徑 38 2.5 小結 41 第三章 碳化矽功率元件應用於永磁同步馬達驅動器之寄生參數分析 42 3.1 馬達規格與參數 42 3.2 SiC MOSFET的規格 44 3.3 有限元素分析與多重物理量系統整合 46 3.3.1 被動性與因果性 47 3.3.2 被動性與因果性之數學定義 49 3.3.3 寄生參數之等效電路模擬 52 3.3.4 比較模擬與實測波形 55 3.4 寄生參數與負載對切換頻率之限制 62 3.5 小結 66 第四章 永磁同步馬達驅動系統之硬體規劃與佈局設計 67 4.1 SiC 變頻器之架構 68 4.1.1 改善di/dt對碳化矽功率元件之影響 70 4.1.2 改善dv/dt對碳化矽功率元件之影響 81 4.2 閘極驅動電路設計及規格 85 4.3 數位信號處理器 88 4.4 小結 89 第五章 SiC變頻器之雛型機製作與實驗結果 90 5.1 碳化矽功率元件應用於永磁同步馬達驅動控制系統之硬體規劃 90 5.2 實驗結果 94 第六章 結論與未來展望 104 6. 1 結論 104 6. 2 未來展望 105 參考文獻 106

    [1]黃樑傑,2017年國際電動車現況與展望,財團法人車輛研究測試中心,2017。
    [2]富田電機,台灣驕傲-電動車馬達, [Online]. Available: http://www.new-insight.com.tw/.
    [3]王知學,劉媛,張雲,張偉,電動汽車驅動電機及控制系統研發現狀,山東科學,2010年03期。
    [4]J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, May 2014.
    [5]Infineon, Wide Bandgap Semiconductor (SiC/GaN), [Online]. Available: https://www.infineon.com/cms/en/product/power/wide-ban
    d-gap semiconduc-tors-sic-gan/.
    [6]X. Mosquet, H. Zablit, A. Dinger, G. Xu, M. Andersen, and K. Tominaga, The electric car tipping point | future of powertrains for owned and shared mobility, 2018.
    [7]K. Vogel and A. J. Rossa, “Improving efficiency in AC drives: comparison of topologies and device technologies,” in Proc. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2014, pp. 1-8.
    [8]Z. Wang, J. Zhang, X. Wu and K. Sheng, “Analysis of stray inductance's influence on SiC MOSFET switching performance,” in Proc. IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, 2014, pp.2838-2843.
    [9]M. R. Ahmed, R. Todd and A. J. Forsyth, “Switching performance of a SiC MOSFET body diode and SiC schottky diodes at different temperatures,” in Proc. IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, 2017, pp. 5487-5494.
    [10]J. Ke, Z. Zhao, Z. Xie, C. Wei and P. Sun, ”Modeling and simulation of SiC MOSFET turn-off oscillation under influence of parasitic parameter,” in Proc. Asia-Pacific Conference on Antennas and Propagation, Xi'an, 2017, pp. 1-3.
    [11]T. Liu, R. Ning, T. T. Y. Wong and Z. J. Shen, “Equivalent circuit models and model validation of SiC MOSFET oscillation phenomenon,” in Proc. IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, 2016, pp. 1-8.
    [12]Haokai Huang, X. Yang, Yanhui Wen and Z. Long, “A switching ringing suppression scheme of SiC MOSFET by Active Gate Drive,” in Proc. IEEE International Power Electronics and Motion Control Conference, Hefei, 2016, pp. 285-291.
    [13]T. Liu, R. Ning, T. T. Y. Wong and Z. J. Shen, “Modeling and analysis of SiC MOSFET switching oscillations,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, Sept. 2016, pp. 747-756.
    [14]H. Qin, C. Ma, Z. Zhu, and Y. Yan, ”Influence of parasitic parameters on switching characteristics and layout design considerations of SiC MOSFETs,” Journal of Power Electronic, Vol. 18, No. 4, July 2018.
    [15]A. Lidow, M. d. Rooij, J. Strydom, D. Reusch, and John Glaser, GaN transistors for efficient power conversion, 2nd Edition, Wiley, 2015.
    [16]Analog Device, "ADuM4121/ADuM4121-1”, Datasheet, 2016.
    [17]D. Martin, W. A. Curbow and T. McNutt, “Performance analysis of a SiC MOSFET half bridge power module with a Miller clamp,” in Proc. IEEE International Workshop On Integrated Power Packaging, Delft, 2017, pp. 1-5.
    [18]F. Mo, J. Furuta and K. Kobayashi, “A low surge voltage and fast speed gate driver for SiC MOSFET with switched capacitor circuit,” in Proc. IEEE Workshop on Wide Bandgap Power Devices and Applications, Fayetteville, AR, 2016, pp. 282-285.
    [19]T. Yamamoto, K. Hasegawa, M. Ishida and K. Takao, “Switching simulation of SiC high-power module with low parasitic inductance,” in Proc. International Power Electronics Conference, Hiroshima, 2014, pp. 3707-3711.
    [20]Z. Chen, Y. Yao, D. Boroyevich, K. Ngo and P. Mattavelli, “Exploration of a switching loop snubber for parasitic ringing suppression,” in Proc. IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, 2014, pp. 1605-1612.
    [21]H. Sayed, A. Zurfi and J. Zhang, “Investigation of the effects of load parasitic inductance on SiC MOSFETs switching performance,” in Proc. IEEE International Conference on Industrial Technology, Toronto, ON, 2017, pp. 125-129.
    [22]H. Li and S. Munk-Nielsen, “Challenges in switching SiC MOSFET without ringing,” in Proc. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2014, pp. 1-6.
    [23]S. Liu, H. Lin and T. Wang, “Comparative study of three different passive snubber circuits for SiC Power MOSFETs,” in Proc. IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2019, pp. 354-358.
    [24]L. Niewiara, M. Skiwski, T. Tarczewski, and L. Grzesiak, “Experimental study of snubber circuit design for SiC power MOSFET,” Computer applications in electrical engineering, vol. 13, 2015, pp. 120-131.
    [25]A. D. Callegaro et al., “Bus bar design for high-power inverters,” IEEE Transactions on Power Electronics, vol. 33, March 2018, pp. 2354-2367.
    [26]A. Sagehashi, K. Kusaka, K. Orikawa, J. Itoh and A. Momma, “Pattern design criteria of main circuit using printed circuit boards for parasitic inductance reduction,” in Proc. International Power Electronics and Motion Control Conference and Exposition, Antalya, 2014, pp. 569-574.
    [27]K. Ishikawa, S. Ogasawara, M. Takemoto and K. Orikawa, “Development of an SiC high-frequency PWM inverter using a thick multilayer PCB to minimize stray inductance,” in Proc. International Power Electronics Conference, Niigata, 2018, pp. 2725-2731.
    [28]S. Tiwari, O. -. Midtgård and T. M. Undeland, “Design of low inductive busbar for fast switching SiC modules verified by 3D FEM calculations and laboratory measurements,” in Proc. IEEE Workshop on Control and Modeling for Power Electronics, Trondheim, 2016, pp. 1-8.
    [29]S. Srdic, C. Zhang and S. Lukic, “A low-inductance sectional busbar for snuberless operation of SiC-based EV Traction Inverters,” in Proc. IEEE Energy Conversion Congress and Exposition, Baltimore, MD, USA, 2019, pp. 6805-6809.
    [30]S. M. Wentworth, M. E. Baginski, D. L. Faircloth, S. M. Rao, and L.S. Riggs, “Calculating effective skin depth for thin conductive sheets,” in Proc. IEEE Antennas and Propagation Society International Symposium, July 2006, pp. 4845–4848.
    [31]S. Safari, A. Castellazzi and P. Wheeler, “Experimental study of parasitic inductance influence on SiC MOSFET switching performance in Matrix converter,” in Proc. European Conference on Power Electronics and Applications, Lille, 2013, pp. 1-9.
    [32]Z. Qiu, H. Zhang and G. Chen, “Study and design of noninductive bus bar for high power switching converter,” in Proc. CES/IEEE International Power Electronics and Motion Control Conference, Shanghai, 2006, pp. 1-4.
    [33]R. J. Pasterczyk, C. Martin, J. -. Guichon and J. -. Schanen, “Planar busbar optimization regarding current sharing and stray inductance minimization,” in Proc. European Conference on Power Electronics and Applications, Dresden, 2005, pp. 9 pp.-P.9.
    [34]N. R. Mehrabadi, I. Cvetkovic, J. Wang, R. Burgos and D. Boroyevich, “Busbar design for SiC-based H-bridge PEBB using 1.7 kV, 400 a SiC MOSFETs operating at 100 kHz,” in Proc. IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, 2016, pp. 1-7.
    [35]P. Yi, Y. Cui, A. Vang and L. Wei, “Investigation and evaluation of high power SiC MOSFETs switching performance and overshoot voltage,” in Proc. IEEE Applied Power Electronics Conference and Exposition, San Antonio, TX, 2018, pp. 2589-2592.
    [36]J. Wang and H. Shu-Hung Chung, “Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter,” IEEE Transactions on Power Electronics, vol. 29, Dec. 2014, pp. 6672-6685.
    [37]A. E. Fitzgerald, ELECTRIC ACHINERY, New York: McGraw-Hill Companies, 2003.
    [38]Microsemi Corporation. 2013. Park, inverse park and clarke, inverse clarke transformations MSS software implementation [Online]. Available: http://www.microsemi.com/documentportal/doc_view/132
    799-park-inverse-park-and-clarke-inverse-clarke-transformations software-implementation-user-guide.
    [39]Texas Instruments. 1997. Clarke & park transforms on the MS320C2xx [Online].Available: http://www.ti.com/lit/an/bpra048/bpra048.pdf.
    [40]T. H. Nguyen, Design of 10kW interior permanent magnet motor for EV traction, M.S. thesis, Dept. Systems and Naval Mechatronic Eng., National Cheng Kung Univ., Tainan, Taiwan, 2016.
    [41]W. Liang, Y. Xu, Y. Li, G. Yang and J. Zou, “PWM frequency voltage noise cancellation in three-phase VSI using the novel SVPWM strategy,” IEEE Transactions on Power Electronics, vol. 33, Oct. 2018., pp. 8596-8606.
    [42]Y. Bai, X. Tang and G. Wu, “Speed control of flux weakening on interior permanent magnet synchronous motors,” in Proc. Transactions of China Electro Technical Society, vol. 26, 2011, pp. 54-60.
    [43]東元精電TSB13152C馬達規格(2020 July) Available: http://www.tedmotors.com/pro/detail.php?pid=204&f=98&cid=100.
    [44]ROHM, “SCT3060AL N-channel SiC power MOSFET”, Datasheet, Jun. 2018.
    [45]詹育霖,一種處理微波電路模型萃取發散性之數值方法,國立中山大學電機工程學系碩士論文,2011。
    [46]P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. G. Canavero and R. Achar, “Stability, causality, and passivity in electrical interconnect models,” IEEE Transactions on Advanced Packaging, vol. 30, Nov. 2007, pp. 795-808.
    [47]M. R. Wohlers, Lumped and distributed passive networks. New York: Academic, 1969.
    [48]N. M. Nussenzveig, Causality and dispersion relations. New York:Academic, 1972.
    [49]Microsemi Corporation. 2017. How to estimate voltage spike from layout parasitic inductance in switched-mode power supplies [Online]. Available:https://community.keysight.com/community/keys
    ight-blogs/eesof-eda/blog/2017/08/02/new-video-clip-how-to-estimate-voltagespikes-from-layout-parasitic-inductance-in-switched-modepower supplies.
    [50]STMicroelectronics, “1N5822”, Datasheet, 2003.
    [51]ON Semiconductor / Fairchild, “SB540”, Datasheet, 2001.
    [52]Murata Power Solutions, “NXE2S1212MC”, Datasheet, 2018.
    [53]TDK, “MMZ1608Y600BTD25”, Datasheet, 2019.
    [54]Texas Instruments, “TMS320F2837xD Dual-Core Delfino™ Microcontrollers”, Datasheet, Nov. 2018.
    [55]林揚傑,汽車電子模組EMC效應分析及改善技術,逢甲大學資訊電機工程碩士在職專班論文,2012。

    無法下載圖示 校內:2025-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE