簡易檢索 / 詳目顯示

研究生: 洪榮暉
Hung, Jung-Hui
論文名稱: 以科技接受模型探討台灣民眾對附有主動車距巡航控制系統之車輛購買意願研究
Using Technology Acceptance Model to Explore Taiwanese People’s Intention to Purchase Automobiles with Adaptive Cruise Control System
指導教授: 黃瀞瑩
Huang, Ching-Ying
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系碩士在職專班
Department of Business Administration (on the job class)
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 66
中文關鍵詞: 科技接受模型知覺風險購買意願
外文關鍵詞: Technology Acceptance Model, Perceived Risk, Intention to Purchase
相關次數: 點閱:169下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先進駕駛輔助系統(Advanced Driver Assistance System, ADAS)為目前汽車產業努力的方向之一,此系統為停車輔助系統、夜視系統、車道偏離警示系統、汽車防撞系統、盲點偵測系統、主動車距控制巡航系統、適路性車燈系統、胎壓偵測系統及煞車電子輔助系統等9項系統集合的總稱,除了作為未來無人自動駕駛車輛最重要的基礎外,其功能已被許多研究證實可有效減少事故發生的可能性。
    根據交通部的數據統計,台灣汽車總數至2018年已達到804萬輛,且警政署的數據亦顯示交通事故比例亦逐年上升,然而台灣車輛上的先進駕駛輔助系統裝載率相較歐美等國卻相對較低,因此,欲透過本研究了解台灣民眾對於附有主動車距巡航控制系統車輛的購買意願。本研究以科技接受模型為理論基礎,並加入知覺風險此一因素來探討,藉由回收有效問卷共499份並以結構方程模式分析驗證個構面間的影響關係。
    研究結果顯示,知覺易用性與知覺有效性皆正向影響使用態度,並增加購買意願,而知覺風險則是負向的影響購買意願。因此汽車業者若能強調主動車距巡航控制系統易於操作且其功能得以有效降低駕駛開車時的負擔,將有助於銷售已提高此系統裝載率。

    Automobile industry embarks on the development of Advanced Driver Assistance System (ADAS), which is a collective term for nine different systems. It is the most important foundation to the self-driving vehicles that many automobile corporates strive to achieve, and its function had been proved that it is effective to boost safety and reduce the possibility of car accidents. According to the data, the number of automobile keep increasing year by year and which of car accident rises simultaneously in Taiwan, however, the percentage of application of ADAS is far lower than the other countries in Europe or USA, therefore, this study aims to explore the intention of people in Taiwan to purchase automobile with ADAS by using Technology Acceptance Model along with Perceived Risk that comes up during the behavior of purchase.
    By collecting 499 valid surveys and analyzing the relevant data with structural equation model, the relationship in the construction of study can be verified. The empirical result indicates that both of perceived ease of use and perceived usefulness can positively affect the attitude toward using ADAS, and the attitude can mediate the intention to purchase, nevertheless, the perceived risk has negative effect on the intention to purchase by contrast.
    This implies that the merchant of automobile can emphasize the strength of ADAS and how easily the consumers can use it to increase its application and sale.

    摘要 I 英文摘要 II 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 3 第三節 研究目的 10 第四節 研究流程 11 第二章 文獻回顧 13 第一節 科技接受模型 14 第二節 知覺風險 19 第三節 購買意願 20 第三章 研究架構方法 22 第一節 研究架構 22 第二節 問卷設計 23 第三節 研究對象、抽樣方式與分析方法 28 第四章 資料分析與結果 35 第一節 人口統計變數分佈 35 第二節 敘述性統計 37 第三節 信度與效度分析 41 第四節 結構方程模式分析 46 第五章 結論與建議 51 第一節 研究結論 51 第二節 研究貢獻與管理意涵 53 第三節 研究限制與建議 54 參考文獻 56 附錄一 研究問卷 61

    網路資料
    1. 輔助與自動駕駛概論(2018)(https://www.ansforce.com/post/S1-p1085)

    中文文獻
    2. 李茂能. (2006). 結構方程模式軟體 Amos 之簡介及其在測驗編製上之應用: An introduction to Amos and its uses in scale development: Graphics & Basic (Vol. 32): 心理.
    3. 李傳房. (2008). 高齡使用者產品設計之探討. 設計學報 (Journal of Design), 11(3).
    4. 黃芳銘. (2007). 結構方程模式: 理論與應用 (五版). 台北: 五南.

    英文文獻
    1. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39): Springer.
    2. Assael, H. (1984). Consumer behavior and marketing action: Kent Pub. Co.
    3. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
    4. Bauer, R. A. (1960). Consumer Behavior as Risk Taking, Dynamic Marketing for a Chasing World, Robert S. Hancock, Chicago: American Marketing Association, 38-398.
    5. Bentler, P. M. (1982). Confirmatory factor analysis via noniterative estimation: A fast, inexpensive method. Journal of Marketing Research, 19(4), 417-424.
    6. Bentler, P. M. (1995). EQS structural equations program manual (Vol. 6): Multivariate software Encino, CA.
    7. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588.
    8. Bollen, K. A. (1989). Structural equations with latent variables Wiley. New York.
    9. Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: The effect of model size on fit assessment in LISREL. Structural equation modeling: Present and future, 169-194.
    10. Browne, M., & Mels, G. (1990). RAMONA User's Guide, Columbus: Department of Psychology. Ohio State University.
    11. Cox, D. F. (1967). Risk taking and information handling in consumer behavior.
    12. Cunningham, M. S. (1967). The major dimensions of perceived risk. Risk taking and information handling in consumer behavior.
    13. Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology,
    14. De Winter, J. C., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation research part F: traffic psychology and behaviour, 27, 196-217.
    15. Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS quarterly, 453-461.
    16. Fishbein, M. (1980). A theory of reasoned action: some applications and implications. Paper presented at the Nebraska Symposium on Motivation. Nebraska Symposium on Motivation.
    17. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior : an introduction to theory and research. Reading, Mass.: Addison-Wesley Pub. Co.
    18. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
    19. Hair, J. F. (2006). Multivariate data analysis: Pearson Education India.
    20. Hair Joseph, F., Anderson Rolph, E., Tatham Ronald, L., & Black William, C. (1994). Multivariate data analysis with readings: Macmillan Publishing Company.
    21. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
    22. Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. ACR Special Volumes.
    23. Jöreskog, K. G., & Sörbom, D. (1989). LISREL 7: A guide to the program and applications: Spss.
    24. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
    25. Lavidge, R. J., & Steiner, G. A. (1961). A model for predictive measurements of advertising effectiveness. Journal of marketing, 25(6), 59-62.
    26. Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.
    27. MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32(2), 193-210.
    28. McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological methods, 7(1), 64.
    29. Morwitz, V. G., & Schmittlein, D. (1992). Using segmentation to improve sales forecasts based on purchase intent: Which “intenders” actually buy? Journal of Marketing Research, 29(4), 391-405.
    30. Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological bulletin, 105(3), 430.
    31. Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International journal of electronic commerce, 7(3), 101-134.
    32. Planing, P. (2014). Innovation acceptance: the case of advanced driver-assistance systems: Springer Science & Business Media.
    33. Rahman, M. M., Lesch, M. F., Horrey, W. J., & Strawderman, L. (2017). Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accident Analysis & Prevention, 108, 361-373.
    34. Roselius, T. (1971). Consumer rankings of risk reduction methods. Journal of marketing, 35(1), 56-61.
    35. Schiffman, L. G., & Kanuk, L. L. (1991). Communication and consumer behavior. Consumer Behavior, 2, 268-306.
    36. Stone, R. N., & Grønhaug, K. (1993). Perceived risk: further considerations for the marketing discipline. 27(3), 39-50.
    37. Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5): Pearson Boston, MA.
    38. Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
    39. Van der Heijden, H., Verhagen, T., & Creemers, M. (2003). Understanding online purchase intentions: contributions from technology and trust perspectives. European journal of information systems, 12(1), 41-48.
    40. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
    41. Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of marketing, 52(3), 2-22.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE