簡易檢索 / 詳目顯示

研究生: 楊炳達
Yang, Bin-Da
論文名稱: 緩坡底床上斜向波列變形之理論解析
Analytical Study of Obliquely Incident Wave Transformation on Gentle Slope
指導教授: 歐善惠
Ou, Shan-Hwei
陳陽益
Chen, Yang-Yih
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 130
中文關鍵詞: 波浪折射底床效應
外文關鍵詞: bottom effect, wave refraction
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   前人針對前進波列斜向傳遞於緩坡底床上的波動場,提出許多的解析模式,但尚留有很多改善的空間,例如,前人的解析結果無法完整地呈現底床坡度影響效應,且無法滿足流體質點速度方向與波向線曲面相切之物理特性。本文提出包括波浪折射、淺化與變形之整體波動場的解析,所得結果可適當地展現底床坡度影響效應,並可滿足前人無法符合的波浪折射幾何特性。

      本文基於線性化處理自由表面邊界條件,且不考慮波浪碎波問題,為呈現底床坡度影響效應,波動場以底床坡度進行攝動展開,並且以波向線座標系統作為參考座標,以滿足流體質點速度方向與波向線曲面相切之物理特性,依此方法,可求得在 Eulerian 系統描述下,展開至二階次之流速勢函數的顯式解。為更明確地描述流體質點的運動特性,Eulerian系統所得結果將線性轉換至 Lagrangian系統,並求得流體質點運動的參數化方程式,藉此參數化方程式,可得前進波列由深水傳遞至淺水,直到碎波發生前的波形整體時空演變現象,並可分析碎波指標、流體質點的運動軌跡、波形起伏間的空間與時間非對稱性,以及波高變化。

      本文由 Lagrangian 系統所分析的相關波動特性,皆已提出完整的理論解析,並藉由繪製一系列的關係圖,可明確地瞭解這些物理量與深海波浪尖銳度、水深、波浪入射角及底床坡度的關係。為符合波浪折射現象的真實性,改善前人結果無法沿波向線方向進行分析的缺點,因此本文中之波動特性皆沿著波向線方向進行分析。另外,底床坡度對波數、碎波指標、波形的時間非對稱性及波高變化的影響,在攝動展開下會出現在二階次,此乃前人求解至一階次的解析模式所無法展現的特性。

      本文並未考慮碎波後的波動場,故解析結果僅適用尚未達到碎波臨界的狀況;在大於碎波水深之區域,解析模式於底床坡度<1/2,可有條件地符合學理上的適用範圍。當底床坡度愈大,本文的底床坡度影響項之效應愈強,但攝動級數的收斂性愈差,所得結果愈無法完整地描述底床坡度效應。

      Although numerous analytical models have been developed to investigate the obliquely incident wave transformation on gentle slope, very few researchers have considered the effect of bottom slope, and the tangential relationship between the direction of a water-particle velocity and the curved surface of a wave ray. In the present study, various aspects of the wave field, including wave deformation, refraction and shoaling has been investigated. Unlike in the previous studies, the effect of bottom slope on the wave propagation has been considered here, and the geometric characteristic of wave refraction is investigated.

      The present study is based on linearized free surface boundary conditions in absence of wave breaking. In order to describe the effect of bottom slope, the physical quantities related to wave motion are cast in a perturbed series with the bottom slope as the parameter. With the wave-ray coordinate system, the water-particle velocity can be tangential to the curved surface of a wave ray. Accordingly, an explicit expression for the velocity potential is derived as a function of the bottom slope, perturbed to the second order in the Eulerian system. Afterwards, the parametric functions for the water-particle motion are obtained by using a linear transformation between the Eulerian system and the Lagrangian system. By using the parametric functions, the process of successive deformation of a wave profile, the breaking index, the fluid-particle trajectory, the spatial and temporal asymmetry of wave profile, and the variation of wave height have been obtained before the wave breaking occurs.

      For the Lagrangian system, the wave characteristics, as discussed in the thesis, are derived as explicit solutions, and illustrated with a series of figures under different conditions of the wave steepness in deep water, such as, the water depth, the incident angle and the bottom slope. In order to correspond with the physical characteristic of wave refraction, all the wave characteristics are specially analyzed along the direction of wave rays. However, the bottom slope is observed to affect the wavenumber, the breaking index, the temporal asymmetry of the wave profile and the variation of wave height, which are therefore presented in second-order in terms of the perturbed expansion. The foregoing could not be accurately described using the first-order analytic models.

      Since the phenomenon of wave breaking is not considered in this study, the present results are applicable for the wave field before the breaking takes place. In the non-breaking region, the theoretical restrictions can be conditionally satisfied for the present analytical model under bottom slope < 1/2. For a steeper bottom slope, the effect of the bottom slope terms can be reinforced, however, it becomes inadequate to expect the full effect of the bottom slope because of the weak nature of convergence of the perturbation series.

    誌謝 I 中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 1 1-3 研究方法與本文組織 9 第二章 波動系統之描述 11 2-1 座標系統之描述及其幾何特性 11 2-2 流體質點速度 15 2-3 控制方程式及邊界條件 19 第三章 理論解析 22 3-1 波動系統攝動展開 22 3-2 流體質點速度方向與波向線曲面相切 24 3-3 基本階解 26 3-4 一階解 28 3-5 二階解 31 3-6 檢核與意義 36 3-7 適用範圍 39 第四章 結果與討論 43 4-1 流體質點速度 43 4-2 Lagrangian 系統轉換 44 4-3 碎波指標 50 4-4 自由表面之波形 55 4-5 波形之斜率非對稱性 77 4-6 流體質點的運動軌跡 85 4-7 波形之時間非對稱性 95 4-8 波高分析 98 第五章 結論與建議 103 5-1 結論 103 5-2 建議 105 參考文獻 106 附錄 112 附錄1 尺度因子的求算 112 附錄2 曲線座標與卡式直角座標之關係式 117 附錄3 卡式直角座標下的流速勢函數 120 附錄4 自由表面處之流體質點之運動參數方程式的係數 124 附錄5 位相函數的推導 126 簡歷與著作 128

    1. Arthur, R. S. (1946), “Refraction of waves by islands and shoals with circular bottom contours,” Transactions American Geophysical Union, Vol. 27 (2), pp. 168-177.

    2. Biesel, F. (1952), “Study of wave propagation in water of gradually varying depth,” In Gravity Waves, U.S. National Bureau of Standards, Circular 521, pp. 243-253.

    3. Chen, Y. Y., Yang, B. D., Tang, L. W., Ou, S. H. and Hsu, J. R. C. (2004), “Transformation of progressive waves propagating obliquely on a gentle slope,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE (Accepted).

    4. Chien, N. (1954), “Ripple tank studies of wave refraction,” Transactions American Geophysical Union, Vol. 35 (6), pp. 897-904.

    5. Chu, V. H. and Mei, C. C. (1970), “On slowly-varying Stokes waves.” Journal of Fluid Mechanics, Vol. 41(4), pp. 873-887.

    6. Cokelet, E. D. (1977), “Steep gravity waves in water of arbitrary uniform depth,” Philosophical Transactions of the Royal Society of London, Ser. A. Vol. 286, pp. 183-230.

    7. Dean, R. G. and Dalrymple, R. A. (1984), Water Wave Mechanics for Engineers and Scientists, Reprinted in 2000, World Scientific Publishing Company, Singapore.

    8. Eckart, C. (1952), “The propagation of gravity waves from deep to shallow water,” In Gravity Waves, U.S. National Bureau of Standards, Circular 521, pp. 165-173.

    9. Ehrenmark, U. T. (1998), “Oblique wave incident on a plane beach: the classical problem revisited,” Journal of Fluid Mechanics, Vol. 368, pp. 291-319.

    10. Gerstner, F. (1802), Theorie der wellen, Abhandlungen der Koniglichen Bohmischen Gesellschaft der Wissenschaften, Prague.

    11. Gaillard, D. D. (1904), Wave action in relation to engineering structure, U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 13.

    12. Goda, Y. (1975), “Irregular wave deformation in the surf zone,” Coastal Engineering in Japan, Vol. 18, pp. 1.13-1.26.

    13. Johnson, T. W., O’Brien, M. P. and Isaacs, J. D. (1948), Graphical construction of wave refraction diagrams, U.S. Navy Hydrographic Office, Technical Report, No. 605.

    14. Keller, J. B. (1958), “Surface waves on water of non-uniform depth,” Journal of Fluid Mechanics, Vol. 4(6), pp. 607-614.

    15. Lauwerier, H. A. (1959), “A note on the problem of sloping beach,” Indagationes Mathematicae, Vol. 21, pp. 229-240.

    16. Lé Méhauté, B. and Webb, L. (1964), “Periodic gravity wave over a gentle slope at a third order of approximation,” Proceedings of the 9th International Conference on Coastal Engineering, ASCE, pp. 23 ~40.

    17. Liu, P. L. F. and Dingemans, M. W. (1989), “Derivation of the third-order evolution equations for weakly nonlinear water waves propagating over uneven bottoms.” Wave Motion, Vol. 11(1), pp. 41-64.

    18. Lozano, C. and Liu, P. L. F. (1980), “Refraction–diffraction model for linear surface water waves,” Journal of Fluid Mechanics, Vol. 101(4), pp. 705-720.

    19. Mason, M. A. (1941), A study of progressive oscillatory waves in water, U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 1.

    20. Miche, A. (1944), “Mouvements ondulatoires de la mer
    en profondeur constante ou decroissante,” Annales des Ponts et Chaussees, Vol. 121, pp. 285-318.

    21. Nayfeh, A. H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons Inc., New York.

    22. Pearson, C. E. (1983), Handbook of Applied Mathematics: Selected Results and Methods, 2nd edition, Van Nostrand Reinhold Company Inc., New York.

    23. Peregrine, D. H. and Ryrie, S. C. (1983), “Anomalous refraction and conjugate solutions of finite amplitude water waves,” Journal of Fluid Mechanics, Vol. 134, pp. 91-
    101.

    24. Peters, A. S. (1952), “Water waves over sloping beach and the solution of a mixing boundary value problem for in a sector,” Communications on Pure and Applied Mathematics, Vol. 9, pp. 443-493.

    25. Phillips, O. M. (1977), The Dynamics of the Upper Ocean, 2nd edition, Cambridge University Press, Cambridge.

    26. Pierson, W. J. (1951), The Interpretation of Crossed Orthogonals in Wave Refraction Phenomena, U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 21.

    27. Rakine, W. J. M. (1863), “On the exact form of waves
    near the surface of deep water,” Philosophical Transactions of the Royal Society of London, pp. 127-138.

    28. Rienecker, M. M. and Fenton, J. D. (1981), “A Fourier approximation method for steep water waves,” Journal of Fluid Mechanics, Vol. 104, pp. 119-137.

    29. Ryrie, S. C. & Peregrine, D. H. (1982), “Refraction of finite amplitude water waves obliquely incident on a uniform beach,” Journal of Fluid Mechanics, Vol. 115, pp. 91-104.

    30. Roseau, M. (1952), Contribution à la Thèorie des Ondes Liquides de Gravitè en Profondeur Variable, Publications Scientifiques et Techniques du MiniStère de l’Air, No. 275, Paris.

    31. Stokes, G. G. (1847),“On the theory of oscillatory waves,” Transactions of the Cambridge Philosophical Society, Vol. 8, pp. 441-455.

    32. Sverdrup, H. U. and Munk, W. H. (1944), Breaker and surf, U.S. Navy Hydrographic Office, Technical Report, No. 234.

    33. Weiss, J. M. (1997), “Three-dimensional linear solution for wave propagation with sloping bottom,” Journal of Oceanic Engineering, IEEE, Vol. 22(2), pp. 203-210.

    34. Wiegel, R. L. and Arnold, A. L. (1957), Model study of wave refraction, U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 103.

    35. Wu, H. J. (1969), The application of a numerical method and computer program in a water wave refraction study, Design Branch Department of Public Works of Canada, Technical Report, No. 12.

    36. 黃正欣、林西川 (1986),「通用模式波浪理論之應用-波浪之變形及平均水位之變化」,第三屆水利工程研討會論文集,第343-362頁。

    37. 黃煌煇、張正、林呈 (1987),「斜坡上波浪非對稱性之研究」,第九屆海洋工程研討會論文集,第133-147頁。

    38. 陳陽益、湯麟武 (1992),「平緩坡度底床上前進的表面波」,
    第十四屆海洋工程研討會論文集,第1-22頁。

    39. 陳陽益 (1994a),「等深水中非旋轉性的自由表面前進重力波之 Lagrangian 方式的攝動解析」,第十六屆海洋工程研討會論文集,第A21-A29頁。

    40. 陳陽益 (1994b),「等深水中非旋轉性的自由表面前進重力駐波之 Lagrangian 方式的攝動解析」,第十六屆海洋工程研討會論文集,第A30-A59頁。

    41. 陳陽益 (1995),「Lagrangian 與 Eulerian 解下前進重力波與
    重力駐波的動力特性」,第十七屆海洋工程研討會論文集,第19-36頁。

    42. 陳陽益 (1996),「非旋轉性前進波的 Eulerian 與 Lagrangian 解間的轉換性」,第十八屆海洋工程研討會論文集,第1-13頁。

    43. 陳陽益 (1997),「平緩坡度底床上前進的表面波」,第十九屆海洋工程研討會論文集,第112-121頁。

    44. 陳陽益、張富東 (1999),「平緩坡度底床上前進波的試驗研究」,第二十一屆海洋工程研討會論文集,第165-174頁。

    45. 陳陽益、黃啟暘 (2000),「Lagrangian方式下平緩底床上之前進波」,第二十二屆海洋工程研討會論文集,第79-88頁。

    46. 楊炳達、陳陽益、湯麟武、歐善惠 (2000),「前進波列斜向傳遞於平緩坡度底床之研究」第二十二屆海洋工程研討會論文集,第1-8頁。

    47. 楊炳達、陳陽益、湯麟武、歐善惠 (2001),「前進波列斜向傳遞於平緩坡度底床之研究(II)」第二十三屆海洋工程研討會論文集,第6-15頁。

    48. 陳陽益 (2001),「前進波之折射:通式與等緩坡度底床情況」,海洋工程學刊,第1卷,第1期,第35-54頁。

    49. 陳陽益 (2002),「波浪向岸前進之折射:II. 極座標下之通式與同心圓底床及淺灘情況和波向線相交 (Caustic) 情形的解決」,第二十四屆海洋工程研討會論文集,第1-15頁。

    50. 楊炳達、陳陽益、湯麟武、歐善惠 (2002),「前進波列斜向傳遞於平緩坡度底床之研究(III)」,第二十四屆海洋工程研討會論文集,第16-25頁。

    51. 陳陽益 (2003a),「非陡坡底床上前進波的非線性解析:I. 系統化攝動展開模式」,第二十五屆海洋工程研討會論文集,第39頁-48頁。

    52. 陳陽益 (2003b),「非陡坡底床上前進波的非線性解析:II. 至二階的解析解及印證」,第二十五屆海洋工程研討會論文集,第49頁-58頁。

    下載圖示 校內:立即公開
    校外:2004-07-26公開
    QR CODE