簡易檢索 / 詳目顯示

研究生: 林瑋佑
Lin, Wei-You
論文名稱: 低地人工浮島之水質淨化與生態功能
Water quality purification and ecological functions of artificial floating islands in coastal area
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 83
中文關鍵詞: 人工浮島水質淨化結構穩定生物利用與水共生
外文關鍵詞: Artificial floating island, water quality improvement, structure stability, ecological role, life with water
相關次數: 點閱:101下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣四面環海,為典型的島嶼型國家,因此國家發展與海洋環境息息相關。然而,長期以來濱海地區的過度開發卻引發許多許多危機,包括地層下陷、水質污染、生態系統與棲息地遭到破壞、外來種入侵、土壤鹽化與海洋資源消耗等。有三分之二的國土低於海平面的荷蘭,與我國有著相似的海岸環境,其長期累積下豐富的治水經驗亦具有相當的參考價值。荷蘭1950年代經歷北海大洪水的災害,造成近二千多人死亡,改變了荷蘭人數百年來與水爭地的作法,從原先以築堤、築壩等大型防堵工程為主要治水方向,轉而以更宏觀、永續的觀念與洪水共生。
    建造人工浮島是這個概念實踐的例子之ㄧ,在本研究中,我們設置了兩座乾式浮島於台南運河以及九座濕式浮島於台南市歷史水景公園我們的研究從人工浮島「結構穩定性」、「生物利用空間營造」及「水質改善」的三個面向,本研究設計現地調查和水槽試驗取得資料。就水質而言,本研究發現人工浮島在覆蓋率34.5%時對總磷擁有最高的去除量,但覆蓋率11.5%人工浮島擁有最高的去除效率。針對水景公園濕式人工浮島之生物調查發現鳥類平均25.6分鐘使用ㄧ次,魚類平均15秒使用人工浮島一次,每平方公尺一天大約生長62.2公克的附著生物。
    針對三種面向的調查發現,人工浮島確實可以提供多種功能包括:水質淨化、提供植物和生物生長的穩定結構、提供生物棲地。考慮到建造時間、維護管理方便性及機動性,濕式人工浮島對此二研究區域是較適合的。

    In the past hundreds years, engineering concepts were at the forefront of lowland flood management. But there was a major shift in thinking in the 1950’s after storms from the north ocean proved too much for the engineering based flood management infrastructure, and created a disaster event leaving cities in ruin. A holistic approach towards water management, that takes into consideration concepts such as “living with water” and allows for adaptation, are needed in order to create sustainable water management plans. Construction of artificial floating islands (AFI) is an example of implementing such concepts. In this research, we set up two dry type AFIs in Tainan canal and nine wet type AFIs in waterview park. Our research focuses on three aspects of AFI: AFI impact on water quality, AFI structure stability and the ecological role AFI’s play. We designed field surveys and tank experiments in order to obtain quantitative data on these three topics. In terms of water quality, we found that AFIs can has a better removal amount of total phosphorus in coverage 34.5%. And AFIs can has a better removal efficiency of TP in 11.5% coverage. Our ecological observations found that the frequency of bird use was once every 25.6 minutes, and fish use was once every 15 seconds. There were about 62.2 grams of attached organisms for each one square meter of AFI per day in the waterview park. Our research found that AFIs can provide several functions including water quality purification, providing a stable structure for plants and aquatic creatures, and a variety of habitat space. Considering the construction time, maintenance and management needs, we found that our wet type AFI is more suitable for these two study areas.

    摘要 I Abstract II 誌謝 III List of tables VI List of figures VIII Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Research Purpose 3 1.3 Research Framework 3 Chapter 2 Literature Review 5 2.1 Water Quality 7 2.2 Structure Stability 10 2.3 Ecological Role 13 Chapter 3 Study Area and AFIs construction 17 3.1 Tainan canal and waterview park Background information description 17 3.2 AFIs constructions 21 3.2-1 2015th dry type AFIs construction 21 3.2-2 2016th wet type AFIs construction 23 Chapter 4 Research Methodology 28 4.1 Water Quality 28 4.1-1 Field survey 28 4.1-2 Tank experiment 31 4.1-3 Water quality parameters 36 4.2 Structure Stability 38 4.3 Ecological Role 40 Chapter 5 Results and discussion 43 5.1 Water Quality 43 5.1-1 Field survey 43 5.1-2 Tank experiment 51 5.1-3 Discussion 52 5.2 Structure Stability 53 5.2-1 Surveyed of canal dry type AFIs A and B 53 5.2-2 Maintenance of wet type AFIs in waterview park 60 5.2-3 Structure stability discussion 62 5-3 Ecological role 63 5.3-1 Bird survey 63 5.3-2 Attachment organism survey 67 5.3-3 Fish survey 69 5.3-4 Avicennia marina growth situation survey 72 5.3-5 Ecological role discussion 74 5.4 Environmental education of AFIs 75 5.5 Summary 76 Chapter 6 Conclusion and recommendation 78 6.1 Conclusion 78 6.2 Recommendations 79 Reference 80

    1. Boom, B. J., He, J., Palazzo, S., Huang, P. X., Beyan, C., Chou, H. M., ... & Fisher, R. B. (2014). A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage. Ecological Informatics,23, pp.83-97.
    2. Building law website: http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=D0070109
    3. Chen, P. I., Chen, C. T., & Lee, J. F. (2016). On Wave Interaction with Floating Structures with Dragged Moorings. Journal of Marine Science and Technology,24(3), pp.530-538.
    4. Debusk TA, Baird R, Haselow D, Goffinet T, (2005), Evaluation of a floating wetland for improving water quality in an urban lake. In: Proceedings of 8th biennial conference (2005) on stormwater research and watershed management. Southeast Florida Management District, Brooksville, Florida, pp.175–184.
    5. Headley TR, Tanner CC, (2006), Application of floating wetlands for enhanced stormwater treatment: a review. Auckland Regional Council Technical Publication No. 324, Auckland Regional Council, Auckland, pp.1–93.
    6. Hubbard RK, (2010), Floating vegetated mats for improving surface water quality. In: Shah V (ed) Emerging environmental technologies, vol 2. Springer, Dordrecht, pp.211–244.
    7. Hwang, L., & LePage, B. A. (2011). Floating Islands—An Alternative to Urban Wetlands. In Wetlands Springer Netherlands: pp.237-250.
    8. Keigo Nakamura, (2009), Performance and design of artificial lagoons for controllingdiffuse pollution in Lake Kasumigaura, Japan. Ecological Engineering 35, pp.141-151.
    9. Koen Olthuis,(2009),不再向海爭地 水上築屋與環境共生,遠見書坊。
    10. Kuo, J. T., & Wu, J. H. (1991). A nutrient model for a lake with time-variable volumes. Water Science and Technology, 24(6), pp. 133-139.
    11. Li, X. N., Song, H. L., Li, W., Lu, X. W., and Nishimura, O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological engineering, 36(4), pp.382-390.
    12. Li X, Mander Ü, Ma Z, Jia Y, (2009), Water quality problems and potential for wetlands as treatment systems in the Yangtze River Delta, China. Wetlands 29, pp.1125–1132.
    13. Lin, J. W. (2016). Effect of the artificial floating island with salt tolerant plants on the treatments of wastewater with high salinity.
    14. Nahlik AM, Mitsch WJ, (2006), Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol Eng 28, pp.246–257.
    15. Nakamura, K., Tsukidate, M., & Shimatani, Y. (1970). Characteristic of ecosystem of an artificial vegetated floating island. WIT Transactions on Ecology and the Environment,22.
    16. Nakamura, K., & Mueller, G. (2008). Review of the performance of the artificial floating island as a restoration tool for aquatic environments. In World Environmental and Water Resources Congress 2008: Ahupua'A: pp.1-10.
    17. Nakamura, K., Kadokura, N., Munakata, Y., Shimatani, Y. and Uda, T. (1999a). “Restoration of lake shore vegetation by artificial floating island.” Environment al Systems Research, 27, pp.305 -314.
    18. Naichia Yeh, PulinYeh and Yuan-HsiouChang, (2015), Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews 47, pp.616-622.
    19. Po-Kang Shih, Wen-Lian Chang, (2006), Surveying the Growth of Aquatic Macrophyte and Water Purification on Artificial Floating Island, Journal of the Environmental Protection, Vol. 29, No.2.
    20. Proposed Standard of Process for Analysis and Assessment in Detention Facilities and Design (2/2), (2006), Water Resources Planning Institute.
    21. Stewart FM, Mulholland T, Cunningham AB, Kania BG, Osterlund MT, (2008), Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes—results of laboratory-scale tests. Land Contam Reclam 16, pp.25–33.
    22. Tai, Tzu –Yao, Wu Shih-Hung. (2006). The investigation of the night habitat and behavior for the black-faced spoonbill. Black-face spoonbill conservation association.
    23. Wen, L., & Recknagel, F. (2002). In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: preliminary results from growth chamber experiment. Agriculture, ecosystems & environment, 90(1), pp.9-15.
    24. Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area. Ecological Engineering, 37(10), pp.1460-1466.
    25. 石栢岡、張文亮,(2006),水生植物在人工浮島生長狀況與水質淨化之分析,中華民國環境保護學會學刊,第29卷第2期。
    26. 李明達. (2003). 以生態工法整治污染湖泊之規劃研究-以美濃中正湖為例, 國立中山大學海洋環境及工程學系研究所碩士論文, 高雄.
    27. 吳俊哲,(2006),日月潭人工浮島設置之效益評估與可行性研究,碩士論文。
    28. 林宗儀,(2010),台灣西南海岸300年來的變遷,Gio Topic地質專題。
    29. 俞克儉, & 俞怡君. (2010). 浮式防波堤之設計研究. 高雄海洋科大學報, (24), 1-25。
    30. 莊修銘. (2003). 繫留雙浮胴之運動與消波特性試驗研究.
    31. 國立成功大學,2013,布袋鹽田濕地及好美寮濕地水文生態環境與泥沙永續管理報告階段性成果報告,內政部營建署.
    32. 黃志豪. (2013). 人工浮島於鹽沼型人工濕地對水質淨化效果之硏究(Doctoral dissertation, 撰者).
    33. 廖本興, (2012),台灣野鳥圖鑑. 水鳥篇, 晨星出版, 隻擠圖書總經銷
    34. 鄭銘日. (2006). 日月潭人工浮島設置之效益評估與可行性研究. 碩士論文, 逢甲大學環境工程與科學所, 台中.
    35. 戴文堅、江漢全,(2008),人工浮島對湖泊水質改善效益評估之分析,農業工程學報,第54卷第1期。

    無法下載圖示 校內:2019-07-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE