| 研究生: |
陳奕任 Chen, Yi-Ren |
|---|---|
| 論文名稱: |
金屬銅化學機械研磨之腐蝕缺陷量測與模型化 Erosion defect measurement and modeling of the copper CMP |
| 指導教授: |
李文熙
Lee, Wen-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 化學機械研磨 、腐蝕模型 |
| 外文關鍵詞: | CMP, Erosion model |
| 相關次數: | 點閱:69 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學機械研磨後,常伴隨著碟型凹陷(dishing)和腐蝕(erosion)缺陷的產生。針對此兩種缺陷目前已有相當多的文獻來探討及研究,但至今尚未有一個較完整精確的模型可以來監控這些缺陷,因此本文將提出一個簡單且精確的腐蝕模型。
本文主要分為兩大部分。首先,本實驗分別測試1.不同的金屬線寬。2.不同的圖形密度。3.不同的晶圓位置。4.不同的研磨參數(分別增加下壓力與轉速)對實際腐蝕量的關係,並探討其原因。
第二,本文將提出一種簡單且精確的化學機械研磨-腐蝕模型,此模型是利用量測金屬線的電阻值並搭配簡單數學公式來對腐蝕(erosion)缺陷進行監控。原理是利用化學機械研磨後金屬線厚度和電阻值的關係來推導腐蝕的量。此外,本文也提出用簡單的電阻串並聯來模擬兩側的阻障層。此方法可適用於不同的金屬線寬、圖騰密度
和金屬層且準確性相當高,誤差大約都小於100Å。
最後,本實驗再分別改變下壓力與轉速來印證此模型的準確性,實驗結果也證明準確性很高。此模型對於分秒必爭的IC製造業尤其適合,因為其製程參數和線寬通常是固定的,因此對於兩側阻障層修正表也是固定的。
Chemical mechanical polishing (CMP) always accompany some defects – dishing and erosion. There are many papers talking about these two defects. However, for these two defects, there isn't a completed model to monitor them yet. Therefore, we will propose a simple and accurate erosion model in this thesis.
The thesis is composed of two parts. The first, each condition including different metal line widths, pattern density, wafer positions and polish recipes will be tested to verify the relation with erosion.
The second, we propose a new and accurate erosion model of the copper CMP –by measuring metal line resistance and taking it into some simple mathematic equations. This model uses the relation between metal line resistance and its thickness to calculate the value of erosion. Besides, we offer a new idea using resistance in parallel and series to simulate the barrier effects, too. This model is suitable for different metal line widths, pattern densities and process recipe. Additionally, its accuracy is high which the difference is less than 100Å.
Finally, we increase down-force and rotation speed to double check the accuracy of our model. The accuracy is still high. This model is suitable for mass-production especially because their metal line width and process is constant which deviation factor is constant either.
參考文獻
[1] 莊達人,VLSI 製造技術,高立圖書。
[2] P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, “ Damascene copper electroplating for chip interconnections ,”in
J. Res. Dev., Vol. 42 , 1998, pp. 567-573.
[3] J.R. Lloyd, J.J. Clement, “Electromigration in copper conductors,” in Thin Solid Films, Vol.262, 1995, pp. 135-141.
[4] C.K. Hu, B. Luther, F.B. Kaufman, J. Hummel, C. Uzoh, D.J. Pearson, ” Copper interconnection integration and reliability ,” in Thin Solid Films, Vol. 262, 1995, pp. 84-92.
[5] H. Goel and D. Dance, “Yield enhancement challenges for 90 nm and beyond ,”in IEEEI/SEMI Advanced Semiconductor Manufacturing Conf., Apr. 2003, pp. 262–265.
[6] M. Gupta, G. Rajagopalan, C. Hong, J. Lu, K. Rose, and R. utmann ,“Planarization yield limiters for wafer-scale 3D ICs,” in IEEEI/SEMI Advanced Semiconductor Manufacturing Conf., May 2002, pp.278–283.
[7] F.W. Preston, “The Theory and Design of Plate Glass Polishing Machines, ” J. Soc. Glass Technology, Vol. 11, 1927, pp.214-247.
[8] J. S. McFarlane and D. Tabor, ”Relation Between Fraction and Adhesion, ”Proc. Roy. Soc. ,Landon , Series A, Vol. 202, 1950, pp.244-253.
[9] A.C. Eringen, ”Theory of Micropolar Fluids, ” in J. Math.
Mech., Vol.16, 1966, pp 1-18.
[10] A.A. Kingbury, “New Oil Testing Machine and Some of its Results,” in Trans. ASME, Vol.24, 1903, pp.144-150
[11] L.M. Cook, “Chemical Process in Glass Polishing,” in J. Non-Crystalline Solid, Vol.120, 1990, pp.152-171.
[12] T. K. Yu, C. C. Yu, M. Orlowski, “A Statistical Polishing Pad Model for Chemical- Mechanical Polishing ,”in 82 International Electron Devices Meeting Technical Digest , 1993,pp.865-868.
[13] T. K. Yu, C. C. Yu, M. Orlowski ,“Combined Asperity Content and Fluid Flow Model for Chemical- Mechanical Polishing,” in Proceedings of IEEE International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits, 1994 , pp. 29-34.
[14] S.R. Runnels, L.M. Eyman, “Tribology Analysis of Chemical Mechanical Polishing,” in J. Electrochem. Soc., Vol. 141, 1994, pp.1698-1701.
[15] S.R. Runnels and P. Renteln, “Modeling the Effect of Polishing Pad Deformation on Wafer Surface Stress Distribution During Chemical Mechanical Polishing,” Dielectric Sci. Technil., vol.6 ,1993, pp. 100-121.
[16]S.R. Runnels, “Feature-Scale Fluid-Based Erosion Modeling For Chemical Mechanical Polishing ,” Electrochemical Society Active Member, Vol. 141, July 1994, pp.1900-1904.
[17] W.T. Tseng, C.W. Liu, B.T. Dai, C.F. Yeh, “Effect of Mechanical
Characteristics on the Chemical Mechanical Polishing of Dielectic
Thin Films,” Thin Solid Films, Vol. 290-291, 1996, pp.458-463.
[18]曾偉志, VLSI-先進模組技術, VLSI-先進模組技術課程, 第二章, 1998, pp.48-51.
[19] J. Jiang, F. Sheng, and F. Ren, “Modeling of two-body Abrasive Wear under Multiple Contact Condition,” Wear,Vol. 217, 1998, pp. 35-45
[20 ] F. G. Shi, B. Zhao and S.-Q. Wang, “ A New Theory for CMP with Soft Pads , ” International Interconnect Technology Conference, 1998, pp.98-73.
[21] J.F. Luo. and D.A. Domfeld, “Material Removel Mechanism in
Chemical Mechanical Polishing:Theory and Modeling,” IEEE,
Transactions on Semiconductor Manufacturing, Vol.14, 2001,pp. 112-133
[22]J. Steigerwald, M. Zirpoli, S. P. Murarka, D. Price, and R. J. Gutmann, “Pattern geometry in chemical mechanical polishing of inlaid copper structures, ” J. Electrochem. Soc., vol. 141, Oct.1994, pp. 2842–2848
[23] J. Tony Pan, Ping Li, Kapila Wijekoon , Stan Tsai, Fritz Redeker,“The copper CMP integration and time dependent pattern effect,” in Proc. Int. Interconnect Technology Conf., 1999, pp. 164–166
[24] B. Stine et al., “The physical and electrical effects of metal-fill patterning practices for oxide chemical-mechanical polishing processes,”IEEE Trans. Electron. Devices, vol. 45, Mar. 1998 pp. 665–679.
[25] S. Kondo, N. Sakuma, Y. Homma, Y. Goto, N.Ohashi, H. Yamaguchi, and N. Owada, “Abrasive-Free Polishing for Copper Damascene Interconnection,” Journal of Electrochemical Society, Vol. 147, 2000, pp.3907-3913
[26] Shijian Li, Lizhong Sun , Stan Tsai , Feng Q.Liu ,Liang Chen,2001,” A Low Cost and Residue-Free Abrasive-Free Copper CMP Process With Low Dishing ,Erosion And Oxide Loss, ”interconnect technology conference, proceedings of the IEEE 2001 international, 4-6,pp.137-139
[27] V. H. Nguyen, A. J . Hof, H. van Kranenburing, P.H. Woerlee, F. Weimar, “Copper Chemical Mechanical Polishing Using a Slurry- Free Technique ,” Microelectronic Engineering, Vol. 55, 2001, pp.305-312.
[28] K.W. Chen , Y.L. Wang , C.P. Liu , L. Chang , F.Y. Li, “Novel slurry solution for dishing elimination in copper process 0.1-Am technology” Thin solid film, Vol.498 ,Mar 2006, pp.50-55
[29] B.E. Stine and R. Vallishayee, “On the Impact of Dishing in Metal CMP Processes on Circuit Performance”, 1998 International Workshop on Statistical Metrology - Technical Papers, Honolulu HI. USA, June 7, 1998, pp.64-67.
[30] Runzi Chang, J. Spanos,” Dishing-Radius Model of Copper CMP Dishing Effects,” IEEE trans on semiconductor manufacture, Vol. 18, No. 2, May 2005.
[31] R. Chang, Y. Cao, and C. Spanos, “Modeling metal dishing for interconnect optimization,” in IEEE Int. Electronic Devices Meeting, Dec. 2003,pp. 249–252.
[32] R. Chang, A. Jindal, R. Gutmann, and C. Spanos, “Copper chemical-mechanical polishing process modeling using the dishing radius concept,” in 8th Annu. Int. Conf. Chemical Mechanical Planarization, Sep. 2003,pp. 003–006.
[33] D. Ouma et al., “An integrated characterization and modeling methodology for CMP dielectric planarization,” in IEEE Int. Interconnect Technology Conf., Jun. 1998, pp. 67–69.
[34] B. Stine et al., “Rapid characterization and modeling of pattern-dependent variation in chemical-mechanical polishing,” IEEE Trans. Semicond. Manuf., vol. 11, Feb. 1998,pp. 129–140.
[35] R. Tian, D. Wong, and R. Boone, “Model-based dummy feature placement for oxide chemical-mechanical polishing manufacturability,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 20, Jul. 2001, pp.902–910.
[36] 王建榮,林必窕,林慶福 編譯,”半導體平坦化CMP技術”。
[37] C. Y. LI, LEI HE, J. J. WU, Y. QIAN, L. T. KOH, B. YU, P. D. FOO and JOSEPH XIE, “Comparative study of ionized metal plasma Ta, TaN and multistacked Ta/TaN structure as diffusion barriers for Cu metallization ,” Surface Review and Letters, Vol. 8, 2001 ,pp.459-464
[38] H.B. Nie, S.Y. Xu, S.J. Wang, L.P. You, Z. Yang, C.K. Ong, J. Li, T.Y.F. Liew “Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering,” Applied Physics A: Materials Science & Processing , Vol.73, Aug. 2001, pp. 229-236
[39] S. Smith, A.Walton, A. Ross, G. Bodammer, and J. Stevenson, “Evaluation of sheet resistance and electrical line width measurement techniques for copper damascene interconnect,” IEEE Trans. Semiconduct. Manufact., vol. 15, May 2002, pp. 214–222.
[40] S. Smith, A. J. Walton, A. W. S. Ross, G. K. H. Bodammer, and J. T.M. Stevenson, “Evaluation of the issues involved with test structures for the measurement of sheet resistance and linewidth of copper damascene interconnect,” in Proc. IEEE Int. Conf. Microelectronic Test Structures, Mar. 2001, pp. 195–200.
[41] Yu-Sheng Wang, Wen-Hsi Lee, Ying-Lang Wang, and Shih-Chieh Chang,” Ta/TaNx barrier film electrical character correlation with plasma,” Proceeding of the 2nd International Symposium on Point Defect and Nonstoichiometry. Oct 4-6 2005 Kaohsiung
[42] J. M. Steigerwald, R. Zirpali, S. P. Murarka, D. Price, and R. J. Gutmann, “Pattern Geometry Effects in the Chemical-Mechanical Polishing of Inlaid Copper Structures,” in J. Electrochem Soc. ,Vol. 142,1994, pp. 2841-2848
[43] M. Fayolle ,F. Romagna, “Copper CMP evaluation: planarization issues ,” in Microelectronic Engineering, Vol.37, 1997 ,pp.135-141
[44] P. Wrschka,a J. Hernandez,a G. S. Oehrlein,a and J. Kingb, “ Chemical Mechanical Planarization of Copper Damascene Structures,” J. Electrochem. Soc., Volume 147, Issue 2, February 2000, pp. 706-712