簡易檢索 / 詳目顯示

研究生: 許舒惠
Hsu, Shu-Hui
論文名稱: 以共電鍍方式製作二硒化銅銦薄膜特性之研究
A study on improvement of co-electrodeposition process for CuInSe2
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 107
中文關鍵詞: 共電鍍二硒化銅銦
外文關鍵詞: CuInSe2, co-electrodeposition
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗首先先對於溶液進行循環伏安法分析,了解在不同狀態下溶液的一些反應機制的差異,方便控制電鍍的條件;利用EDS對於薄膜進行成分分析;使用X光粉末繞射儀針對薄膜的結構及結晶性進行分析;拉曼光譜分析薄膜是否有二次相的存在;使用掃描式電子顯微鏡觀察鍍層之微結構及緻密性;原子力顯微鏡分析在不同電鍍條件下,鍍層之粗糙度。
    實驗結果顯示,調整溶液的相對濃度可以調整初鍍膜的成分比例,使硒化後得到接近理想的組成(Cu:In:Se=1:1:2)。且由拉曼光譜分析可知,當鍍層接近組成時,其Cu2Se與Se訊號也相對減弱許多。適當的調整電壓大小,可以改善鍍層的品質,降低粗糙度。而在照光與溶液加熱輔助下,由XRD分析發現其可以增加薄膜的結晶性,CuInSe2 (112)peak變強且較對稱。且在SEM表面結構分析可以發現在-0.7V與溶液加溫至50℃時,可以得到最佳的鍍層,其堆積較密集,在適當的電沉積速度下,提供鍍層能量可以得到較平坦的鍍層。

    Cyclic voltammetry (CV) was utilized to examine the reaction potential of the ions in the solution, and this made us know the mechanism of the co- eletrodeposition. Energy dispersive spectroscopy (EDS) was used to estimate the composition of the thin films. The crystal structure of the thin films was identified by powder x-ray diffraction (XRD). Raman spectroscopy was applied for analysis of second phase. The microstructure was observed by scanning electron microscope (SEM) and atomic force microscope (AFM), and the compactness of the films was also characterized.
    Based on EDS analysis, composition of the precursor can be adjust by the concentrations of ions in the solution, then make the films close to the stoichiometry of CuInSe2(Cu:In:Se=1:1:2) after selenization process. And from the Raman spectroscopy, it reveals the reducing of Cu2Se and excess Se. The quality and roughness of the thin films can be improved by adjusting the potential of electrodeposition. And with the assistant of light and raising the temperature of the solution, the crystal structure is much better by XRD and SEM analysis. The (112) peak becomes stronger and sharper. At -0.7V, the potential of electrodepsition, the film of CuInSe2 is more compact and flatter by SEM and AFM analysis. When the temperature of eletrodeosition solution raises to 50℃, the CuInSe2 becomes flatter.

    第一章 緒論1 1-1 背景1 1-2 研究目的2 第二章 文獻回顧5 2-1 太陽電池工作原理[14]5 2-2 二硒化銅銦薄膜介紹11 2-3 電鍍原理介紹14 2-3.1 電鍍電極介紹[22]14 2-2.2 電鍍液組成介紹16 2-2.3 影響電鍍之因素17 2-3 循環伏安法19 2-4 二硒化銅銦形成之反應機制[25-28]21 第三章 實驗方法與步驟24 3-1 實驗材料24 3-1.1 實驗靶材(Sputtering Target)24 3-1.2 基材(Substrates)24 3-1.3 濺鍍及退火使用氣氛(Gas Ambient)24 3-1.4 實驗相關藥品24 3-2 實驗設備25 3-2.1 恆電位儀25 3-2.2 薄膜濺鍍系統(Sputtering System )27 3-2.3 磁石攪拌平台28 3-2.4 快速退火爐(Rapid Thermal Annealing)28 3-3 實驗流程29 3-3.1 鉬基板製作30 3-3.2 溶液的配製30 3-3.3 循環伏安法 (cyclic voltammetry)30 3-3.4 電鍍CuInSe2膜31 3-3.5 RTA熱處理31 3-4 鍍層分析儀器32 3-4.1 α-step 膜厚計32 3-4.2 四點探針32 3-4.3 掃描式電子顯微鏡[41] (Scanning Electron Microscope;SEM)33 3-4.4 能量分散光譜儀[41](Energy Dispersive Spectroscopy;EDS)34 3-4.5 X-Ray粉墨繞射儀 (Powder X-ray Diffraction)[42]35 3-4.6 拉曼光譜儀[41]35 3-4.7 原子力顯微鏡 (Atomic Force Microscopy;AFM)37 第四章 實驗結果與討論38 4-1 鉬基板38 4-2 循環伏安法40 4-2.1 溶液在不同pH值之循環伏安分析40 4-2.2 溶液加入導電鹽之循環伏安法45 4-2.3 溶液有無照光之循環伏安法48 4-2.4 不同溶液溫度之循環伏安分析49 4-3 薄膜組成成份分析51 4-3.1 銅濃度改變51 4-3.2 銦濃度改變53 4-3.3 硒濃度的改變55 4-3.4 硒化溫度的改變57 4-4 薄膜晶體結構分析59 4-4.1 銅濃度改變59 4-4.2 銦濃度改變61 4-4.3 硒濃度改變63 4-4.4 硒化溫度改變65 4-4.5 照光對電鍍CuInSe2膜之XRD比較67 4-4.6 溶液加溫對電鍍CuInSe2膜之XRD比較74 4-5 拉曼光譜分析76 4-5.1 銅濃度改變之拉曼光譜分析76 4-5.2 溫度改變之拉曼光譜分析77 4-5.3 硒濃度改變之拉曼光譜分析78 4-5.4 照光電鍍之拉曼光譜分析80 4-5.4 溶液加溫電鍍之拉曼光譜分析84 4-6 表面結構觀察分析86 4-6.1 沒有照光下不同電壓之表面結構觀察87 4-6.2 照光下不同電壓之表面結構觀察89 4-6.3 不同溶液溫度下之表面結構觀察92 4-6.4 剖面圖分析94 4-7 原子力顯微鏡表面分析96 4-7.1 不同電壓下之鍍層粗糙度分析96 4-7.2 照光對鍍層之粗糙度影響98 4-7.3 電鍍溶液溫度對鍍層之粗糙度影響101 第五章 結論103 第六章 參考文獻104

    1.楊宏澤,太陽能發電系統與工程上課講義,2008
    2.邱秋燕,廖曰淳,楊慕震,黃渼雯,羅一玲,銅銦鎵硒太陽電池-非真空製程技術發展簡介,工業材料雜誌,264, (2008)
    3.S. Niki, P.J. Fons, Y. Lacroix, K. Iwata, A. Yamada, H. Oyanagi, M. Uchino, Y. Suzuki, R. Suzuki, S. Ishibashi, T. Ohdaira, N. Sakai, H. Yokokaw, Control of intrinsic defects in molecular beam epitaxy grown CuInSe2, Journal of Crystal Growth, 201-202, 1061 (1999)
    4.D. Bhattacharyya, I . Forbes, F. O. Adurodija, M. J. Carter, Formation of CuInSe2 by the selenization of sputtered Cu/In layers, Journal of Materials Science, 32,1889(1997)
    5.S.N. Kundu, D. Bhattacharyya, S. Chaudhuri, A.K. Pal, Synthesis of CuInSe2 films by rapid thermal processing of stacked elemental layers, Materials Chemistry and Physics, 57, 207(1999)
    6.G. Sasikala, S. Moorthy Babu and R. Dhanasekaran, Electrocrystallization and characterization of CuInSe, thin films, Mater. Chem. Phys., 42, 210 (1995)
    7.J. Kois, S. Bereznev, E. Mellikov, and A. Opik, Electrodeposition of CuInSe2 thin films onto Mo-glass substrates, Thin Solid Films, 511–512, 420 (2006)
    8.D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert and J.P. Fauvarque, Chalcopyrite thin film solar cells by electrodeposition, Sol. Energy, 77, 725 (2004)
    9.D.D. Shivagan , P.J. Dale, A.P. Samantilleke, L.M. Peter, Electrodeposition of chalcopyrite films from ionic liquid electrolytes, Thin Solid Film 515, 5899 (2007)
    10.C.Sene,M. Estela Calixto, Kevin D. Dobson, Robert W. Birkmire, Electrodeposition of CuInSe2 absorber layers from pH buffered and non-buffered sulfate-based solutions, Thin Solid Films, 516, 2188 (2008)
    11.M.C.F. Oliveira, M. Azevedo, A. Cunha, A voltammetric study of the electrodeposition of CuInSe2 in a citrate electrolyte, Thin Solid Films, 405, 129 (2002)
    12.Marianna Kemell, Heini Saloniemi, Mikko Ritala, arkku Leskela, Electrochemical Quartz Crystal Microbalance Study of the Electrodeposition Mechanisms of CuInSe2 Thin Films, Journal of The Electrochemical Society, 148, C110 (2001)
    13.V. Alberts, M. Chenene, Preparation of CulnSe2 thin films by rapid thermal processing of Se-containing precursors, Journal of Materials Science, 11, 285(2000)
    14.林明獻, 太陽電池入門技術, 2nd ed. (全華圖書股份有限公司, 台北, 2008)
    15.Adolf Goetzberger, Christopher Hebling, Photovoltaic materials, past, present, future, Solar Energy Materials & Solar Cells, 62, 1(2000)
    16.L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO, Thin Solid Films, 515,5891 (2007)
    17.R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, U. Rqhle, Solar cells based on CuInS2—an overview, Thin Solid Films, 480–481, 509(2005)
    18.J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction, Journal of Applied Physics, 87, 3683 (2000)
    19.N.B. Chaure, J. Young, A.P. Samantilleke and I.M. Dharmadasa, Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications, Sol. Energy Mater. Sol. Cells, 81, 125 (2004)
    20.N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells, Thin Solid Films , 472, 212 (2005)
    21.M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2nd ed. ( Wiley, New Jersey, 2006)
    22.胡啟章, 電化學原理與方法, 1st ed. (五南圖書出版, 台北, 2002)
    23.S. Beyhan, S. Suzer, F. Kadırgana, Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin films, Solar Energy Materials & Solar Cells, 91, 1922 (2007)
    24.Soon Hyung Kang, Yu-Kyung Kim, Don-Soo Choi, Yung-Eun Sung, Characterization of electrodeposited CuInSe2 (CIS) film, Electrochimica Acta, 51, 4433 (2006)
    25.F. Hergert, S. Jost, R. Hock, M. Purwins, A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2, Journal of Solid State Chemistry, 179, 2394 (2006)
    26.Marianna Kemell, Mikko Ritala, Heini Saloniemi, Markku Leskelä, Timo Sajavaar and Eero Rauhal, One-Step Electrodeposition of Cu2-xSe and CuInSe2 Thin Films by the Induced Co-deposition Mechanism, Journal of The Electrochemical Society, 147, 1080 (2000)
    27.O. Roussel, O. Ramdani, E. Chassaing, P.P. Grand, M. Lamirand, A. Etcheberry, O. Kerrec, J.F. Guillemoles, and D. Lincota, First Stages of CuInSe2 Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films, Journal of The Electrochemical Society, 155, D141 (2008)
    28.S. Josta, F. Hergert, R. Hock, J. Schulze, A. Kirbs, T. VoX, M. Purwins, The formation of CuInSe2 thin film solar cell absorbers from electroplated precursors with varying selenium content, Solar Energy Materials & Solar Cells, 91, 1669 (2007)
    29.M. Schlesinger, M. Paunovic, Modern electroplating, 4th ed.( Wiley, New Jersey, 2000)
    30.A.M. Ferna´ndez, R.N. Bhattachary, Electrodeposition of CuIn1-xGaxSe2 precursor films:optimization of film composition and morphology, Thin Solid Films, 474, 10 (2005)
    31.O. Volobujeva, J. Kois, R. Traksmaa, K. Muska, S. Bereznev, M. Grossberg, E. Mellikov, Influence of annealing conditions on the structural quality of CuInSe2 thin films, Thin Solid Films, 516, 7105 (2008)
    32.N.J.Yao, S.M.Huang, L.K.Pan, Z.Sun, Y.W.Chen, Electrochemic growth of CuInSe2 thin film on ITO/soda-lime glass from acidic medium, IEEE International Nanoelectronics Conference,2nd , 751 (2008)
    33.A. Corrons, A. Pons, Daylight simulator, Applied Optics, 26, (1987)
    34.D. Braunger, D. Hariskos, G. Bilger, U. Rau and H.W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films, 361, 161(2000)
    35.J. Alvarez-Garc, E. Rudigier, N. Rega, B. Barcones, R. Scheer, A. Pe’rez-Rodr’guez, A. Romano-Rodr’guez, J.R. Morante, Growth process monitoring and crystalline quality assessment of CuInS(Se)2 based solar cells by Raman spectroscopy, Thin Solid Films, 431 –432, 122(2003)
    36.LIU Fang-yang, LÜ Ying, ZHANG Zhi-an, LAI Yan-qing, LI Jie, LIU Ye-xiang, Pulse-plating electrodeposition and annealing treatment of CuInSe2 films, Trans. Nonferrous Met. Soc. China, 18, 884(2008)
    37.T. P. Gujar, V. R. Shinde, Jong-Won Park, Hyun Kyung Lee, Kwang-Deog Jung and Oh-Shim Joo, Characterization of Electrochemically Grown Crystalline CuInSe2 Thin Films, Journal of The Electrochemical Society, 156, E8 (2009)
    38.M.E. Calixto and P.J. Sebastian, Depth profile analysis of CuInSe2 (CIS) thin films grown by the electrodeposition technique, Solar Energy Mat. Solar Cells, 63, 335(2000)
    39.L. Kronik, U. Rau, J-F. Guillemoles, D. Braunger, H.W. Schock and D. Cahen, Interface redox engineering of Cu(In,Ga)Se2-based solar cells: oxygen, sodium, and chemical bath effects, Thin Solid Films, 361, 353(2000)
    40.D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, (McGraw-Hill, New York, USA, 1995)
    41.汪建民,材料分析,1st ed.(中國材料科學學會,新竹,1998)
    42.林麗娟, X光繞射原理及其運用, 工業材料, 86, 101(1994)
    43.A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, A mechanical microscope: High-speed atomic force microscopy, Applied Physic Letters, 86, 034106 (2005)
    44.J. Alvarez-García, E. Rudigier, N. Rega, B. Barcones, R. Scheer, A. Pérez-Rodríguez, A. Romano-Rodríguez and J.R. Morante, Growth process monitoring and crystalline quality assessment of CuInS(Se)2 based solar cells by Raman spectroscopy, Thin Solid Films, 431,122 (2003)
    45.O. Ramdani, J.F. Guillemoles, D. Lincota, P.P. Grand, E. Chassaing, O. Kerrec, E. Rzepka, One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy, Thin Solid Films, 515, 5909 (2007)
    46.V. Izquierdo-Roca, J. A´ lvarez-García, L. Calvo-Barrio, A. P´erez-Rodríguez, J. R. Morante, V. Bermudez, O. Ramdani, P.-P. Grand and O. Kerrec, Raman scattering characterisation of electrochemical growth of CuInSe2 nanocrystalline thin films for photovoltaic applications: Surface and in-depth analysis, Surf. Interface Anal., 40, 798 (2008)

    下載圖示 校內:2014-07-31公開
    校外:2014-07-31公開
    QR CODE