| 研究生: |
黃康維 Huang, Kang-Wei |
|---|---|
| 論文名稱: |
孤立波於斜坡上溯升與流場之試驗研究 Experimental Study on Run-up height and velocity field of solitary waves |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 共同指導教授: |
黃煌煇
Hwung, Hwung-Hweng 楊瑞源 Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 孤立波 、溯升 、粗糙斜坡 、BIV |
| 外文關鍵詞: | solitary wave, run-up, rough slope, BIV |
| 相關次數: | 點閱:100 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當波浪傳遞至近岸時,岸邊之溯升造成沿岸潛在危機,而由於長波特性在深海傳遞不易發現,直到近岸時因淺化效應波峰急遽漲高之情形,造成災害發生時間急促。因此針對長波於斜坡上溯升為經典之議題,但為了簡化問題,大多是以光滑斜坡作為研究,與實際的岸邊坡面有所抵觸,粗糙的坡面鮮少作深入探討。本研究使用位於成功大學水工試驗所之流體力學實驗室水槽(21m長,0.5m寬,0.7m高),並以孤立波模擬長波,觀察1:20之粗糙斜坡上之溯升高度以及碎波帶速度場,斜坡包括光滑、砂紙、玻璃珠以及草皮墊,波高水深比由0.042到0.451。首先以光滑斜坡探討孤立波溯升時受到水槽邊界之影響,結果顯示最大溯升時,經過去除邊界影響之平均值與最大值相對誤差在10%以內,接著蒐集多位前人於斜坡1:20之試驗數據迴歸出光滑斜坡之溯升高度經驗公式,改善前人略為高估之經驗公式,並透過係數檢驗法驗證此溯升經驗公式之適用性,結果顯示不管為大尺度試驗或是小尺度試驗都吻合經驗公式之係數定值。再由粗糙斜坡溯升數據以及光滑斜坡溯升數據之比值,稱為粗糙因子,即可計算出粗糙斜坡之溯升經驗公式,並發現公式吻合於溯升數據,代表粗糙斜坡之溯升相較於光滑斜坡之溯升呈現線性變化,也透過係數檢驗法驗證粗糙斜坡溯升經驗公式之適用性,結果顯示各試驗條件皆吻合於經驗公式之係數定值。速度場方面使用氣泡影像測速法之兩個觀測視窗FOV1、FOV2,完整量測孤立波於粗糙斜坡之碎波帶流場。由速度剖面圖觀察不同水深之速度變化,並針對沖刷帶之速度,分為水深平均法以及最大值選定法計算,最後將光滑斜坡與粗糙斜坡所計算之沖刷帶速度比值與粗糙因子比較,結果顯示砂紙以及玻璃珠斜坡有良好的吻合,而草皮墊斜坡則是沖刷帶速度比值大於粗糙因子。
The classic issue of solitary waves run-up on smooth beaches has been extensively studied by using different research methodologies. However, in reality, coastal beaches should have surface roughness instead of being hydraulically smooth.
In this study, in order to observe the physical phenomena of solitary-wave on a 1:20 slope, a new experiment has been done in a laboratory tank (21m×0.7m×0.5m). There were four slope materials including smooth, sandpaper, carpet, and glass spheres slope. The water depths were 10cm, 12cm, 14cm, 15cm and 16cm, and the nonlinearity (H/ho) were from 0.042 to 0.451.
The results indicated that the relative error rate of maximum run-up between the average values of boundary effects analysis and the maximum values are less than 10%. In order to acquire a new fitting curve, we collected large number of run-up data from solitary waves on a 1:20 smooth slope, and used the coefficients to examine the correctness of formula. Based on new fitting empirical formula on smooth slope, we calculated the empirical formula on rough slopes with roughness factor, and also used the coefficients to examine the correctness of formula.
As to the velocity field, two fields of view were employed on the slope by using Bubble Image Velocimetry. We compared the roughness factors and the velocity ratio (rough slope divided by smooth slope) in the aerated swash zone. The results indicated the velocity ratio and roughness factor have similar values with sandpaper slope and glass spheres slope, yet the velocity ratio was obviously greater than roughness factor of carpet slope.
[1]Adrian, R.J., 1991. "Particle-imaging techniques for experimental fluid mechanics". Annual Review of Fluid Mechanics, 23, 261-304.
[2]Carrier, G.F., Greenspan, H.P., 1958. "Water waves of finite amplitude on a sloping beach". Journal of Fluid Mechanics 4(01), 97-109.
[3]Chang, Y.H., Hwang, K.S., Hwung, H.H., 2009. "Large-scale laboratory measurements of solitary wave inundation on a 1:20 slope". Coastal Engineering 56, 1022–1034.
[4]Erika, K.L., 2011. "Run-up of solitary waves", Master of science. Faculty of Mathematics and Natural Sciences University of Oslo.
[5]EurOtopⅡ Manual, 2016. "Wave overtopping of sea defences and related structures".
[6]Feng, 2001. "Experimental study of the effect of coastal terrain roughness on ocean long wave runup". Master of Science in Civil engineering. University of Hawaii.
[7]Goring, D.G., 1978. "Tsunamis-the propagation of long waves onto a shelf". Ph.D. Thesis, California Institute of Technology, Pasadena, California.
[8]Grilli, S.T., Svendsen, I.A., Subramanya, R., 1997. "Breaking criterion and characteristics for solitary waves on slopes". Journal of Waterway, Port, Coastal, and Ocean Engineering 123(3), 102-112.
[9]Grimshaw, R., 1971. "The solitary wave in water of variable depth". Part 2. Journal of Fluid Mechanics 46(3), 611-622.
[10]Hsiao, S.C., Hsu, T.W., Lin, T.C., Chang, Y.H., 2008. "On the evolution and run-up of breaking solitary waves on a mild sloping beach". Coastal Engineering 55(12), 975-988.
[11]Jensen, B., Christensen Erik, D., Mutlu Sumer, B., Vistisen, M., 2015. "Flow and turbulence at rubble-mound breakwater armor layers under solitary wave". Journal of Waterways, Port, Coastal, and Ocean Engineering, ASCE, 141(6).
[12]Lo, H.Y., Park, Y.S., Liu, P.L.F., 2013. "The run-up and back-wash processes of single and double solitary waves". Coastal Engineering 55, 1-14.
[13]Li, Y., Raichlen, F., 2002. "Non-breaking and breaking solitary wave run-up". Journal of Fluid Mechanics, 456, 295-318.
[14]Lin, C., Yeh, P.H., Kao, M.J., Yu, M.H., Hseih, S.C., Chang, S.C., Wu, T.R., Tsai, C.P., 2015. "Velocity fields inside near-bottom and boundary layer flow in prebreaking zone of solitary wave propagating over a 1:10 slope". Journal of Waterways, Port, Coastal, and Ocean Engineering, ASCE, 141(3), 1-30.
[15]Lin, C., Yeh, P.H., Hseih, S.C., Shih, Y.N., Lo, L.F., Tsai, C.P., 2014. "Pre-breaking internal velocity field induced by a solitary wave propagating over a 1:10 slope". Ocean Engineering, 80, 523-531.
[16]Lee, Y.T., Wu, Y.T., Hwung, H.H., Yang, R.Y., 2016. "Physical modeling of long-wave run-up mitigation using submerged breakwaters". EGU General Assembly in Vienna Austria, 4617.
[17]Ryu, Y., Chang, K.-A., Lim, H.-J., 2005. "Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater". Meas. Sci. Technol. 16, 1945-1953.
[18]Synolakis, C.E., 1987. "The runup of solitary waves". Journal of Fluid Mechanics 185, 523-545.
[19]Steeg, V., 2014. "Residual strength of grass on river dikes under wave attack". Deltares Report, 1207811-009.
[20]TAW, 1974. "Wave run-up and overtopping". Technical Advisory Committee on Water Defences in the Netherlands.
[21]TAW, 1997. "Erosion Resistance of grassland as dike covering". Technical Advisory Committee for Flood Defence in the Netherlands.
[22]Van Steeg, P., Klein Breteler, M., Provoost, Y., 2016. "Large-scale physical model tests to determine influence factor of roughness for wave run-up of channel shaped block revetments". Ottawa, Canada, May 10-13.
[23]Wüthrich, D., Pfister1, M., Manso1, P., Constantinescu, G., Schleiss, A.J., 2016. "Surface turbulence on bores and surges propagating on smooth and rough beds". Proceedings of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science Ottawa, Canada, May 10-13.
[24]Yeh, H., Abdulhamid, G., Ingunn M., 1989. "Experimental study of bore run-up". Journal of Fluid Mechanics. (1989), 206, 563-578.
[25]高明哲、林呈、曾光緯、黃薇穎、張廣安、張國棟、James Yang、蔡清標、黃致鋐,2015年。「應用BIV 與PIV 於孤立波碎波水氣二相流流場之量測技術開發整合」,第37 屆海洋工程研討會論文集。