| 研究生: |
鄭肇宗 Chen, Chao-Chung |
|---|---|
| 論文名稱: |
規則波與細砂質海床上透水潛體交互作用之試驗研究 Experimental Studies on the Interactions of Regular Waves and a Permeable Submerged Obstacle on the Fine Sandy Seabed |
| 指導教授: |
歐善惠
Ou, Shan-Hwei 臧效義 Tzang, Shiaw-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 液化 、透水潛體 、細砂質海床 |
| 外文關鍵詞: | fluidized, permeable submerged obstacle, fine sandy seabed |
| 相關次數: | 點閱:149 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以水槽試驗方式探討規則波浪作用於細砂質海床上之透水潛體所產生之交互作用結果。試驗結果顯示海床於非液化時,潛體並無沉陷且海床面貌無明顯之改變。當發生起始液化反應,潛體之沉陷量為最大,平均約為液化深度之51 %左右,且液化深度由上游處向下游處遞減;此外,海床高程則明顯地因掏刷而遞減。連續液化反應時,如果液化深度不再加深則潛體不再下沉,但海床高程仍因漂砂活動而逐漸降低直至試回終了,海床平均掏刷量會由上游處向下游處遞減。當海床回復至非液化時海床面會開始出現砂漣現象。
單頻波試驗結果顯示透水潛體於海床非液化反應時之平均反射率為0.157,相較於不透水潛體之0.193,當潛體受海床液化影響而沉陷後,反射率會明顯降低至平均約0.09左右,與水平底床時相近。波浪於非液化反應時,各斷面波高比值幾乎呈現穩定無衰減之現象,一旦海床產生液化反應時,由於液化海床之消能作用,波高明顯縮小,於透水潛體與不透水潛體底床下游處之波能衰減各為60 %與52 %左右,隨著造波試次(液化試次)之增加波能衰減會逐漸遞減。於長時間造波試驗下(600 sec),超額孔隙水壓隨著造波延時而逐漸宣洩,波能衰減亦隨之趨緩,波高卻逐漸回復至海床液化前之波高,顯示海床型態與波浪-海床交互作用息息相關,尤其設置結構物之海床需受較大之波浪才達液化反應,將有助於降低海床液化之發生機率。
This thesis primarily investigates with flume experiments the interactions of regular waves and a rectangular permeable submerged obstacle on a fine sandy seabed. Experimental results illustrate that in unfluidized responses no settlement of submerged obstacle or bed-form changes occurred. In initially fluidized responses the settlements became very evident to depths of about average of 51 % of the fluidization depth decreasing downstream-wards. Meanwhile, seabed levels were also decreasing due to noticeable scouring and active sediment suspensions. Generally in continuously fluidized responses no more settlements were seen in cases with shallower fluidization depths. But seabed continues to be scoured during wave generations to lower bed depths downstream-wards until another unfluidized run.
The monochromatic wave tests further show that in unfluidized responses the wave reflection coefficient from the permeable submerged obstacle was 0.157 compared with 0.193 for impermeable cases, while wave oscillations at each site remained stable. As the submerged obstacle had been settling down into the fluidized seabed, the reflection coefficient gradually decreased to about 0.09. The wave energies also started to decay along the fluidized seabed with ratios up to as high as of 60 % and 52 % at a downstream site of the permeable and impermeable submerged obstacle, repectively. In particular, the decay ratio of wave energy was seen to decrease in a longer time (600 sec) run as excess pore pressures were decreasing. As a result, the installation of submerged obstacle can help seabed resist stronger waves while reduce possibilities of occurrences of bed fluidization.
參考文獻
1.Biot, M.A. (1941), “General theory of three-dimensional consolidation.” J. Appl. Phys., Vol. 12, pp. 155-165.
2.Biot, M.A. (1956), “Theory of propagation of elastic waves in fluid-saturated porous solid:1 low-frequency range.” J. Acoust. Soc.Am., Vol. 28, pp. 168-191.
3.Clukey, E.C., F.H. Kulhawy and P.L.-F. Liu (1983), “Laboratory and field investigation of wave-sediment interaction.” Joseph H. DeFrees Hydraulics Laboratory , Rep. 83-1, School of Civil and Environmental Eng., Cornell University, Ithaca, N. Y.
4.Foda, M. A. and S. Y. Tzang (1994), “Resonant fluidization of silty soil by water waves.” J. Geophys. Res. 99 (C10), pp. 20463-20475.
5.Funke, E. R. and E. P. D. Mansard (1980 a), “On the synthesis of realistic sea state.” Proc. 17th Int. Conf. on Coastal Eng., Sydney, pp. 2974-2991.
6.Funke, E. R. and E. P. D. Mansard (1980 b), “The measurement of incident and reflected spectra using a least squares method.” Proc. 17th Int. Conf. on Coastal Eng., Sydney, ASCE, pp. 154-172.
7.Heribich, J. B. and S. C. Ko (1967), “Scour of sand beaches in front of seawall.” Proc. 11th ICCE. pp. 622-643.
8.Hsu, J. R. C., Y. Tsuchiya and R. Silvester (1979), “Third-order approximation to short-crested waves.” J. Fluid Mech. , Vol. 90, part 1, pp. 179-196.
9.Hsu, J. R. C., R. Silverster and Y. Tsuchiya (1980), “Boundary-layer velocities and mass transport in short-crested waves.” J. Fluid Mech., Vol. 99, pp. 321-342.
10.Huang, C. M. (1996), “A fluidization model for cross-shore sediment transport.” Ph. D. Dissertation, University of California, Berkeley, U.S.A.
11.Kang, Y.K., S. Takahashi, S. Yamamoto, H. Miura, T. Takano, K.I.,and Shimosako, K. Suzuki (1999), “Development of a new wave absorbing system using a sand liquefaction.” Report of the port and harbour research institute, Vol. 38, No. 3.
12.Lu Xiaobing and Cui Peng (2004), “The liquefaction and displacement of highly saturated sand under water pressure oscillation.” Ocean Eng., Vol. 31, pp.795-811.
13.Mei, C. C. and M. A. Foda (1981), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.
14.Sato, S., N. Tanaka and I. Irie (1968), “Study on scouring at the foot of coastal structures.” Proc. 11th ICCE. pp. 579-598.
15.Sumer, B.M. , J. Fredsoe, S. Cgristensen and M.T. Lind (1999), “Sinking/floatation of pipelines and other objects in liquefied soil under waves.” Coastal Eng., Vol. 38, pp.53-90.
16.Sumer, S. M., R. J. S. Whitehouse, and A.Torum (2001), “Scour around coastal structures : a summary of recent research. ” Coastal Eng., Vol. 44, pp.153-190.
17.Terzaghi, K. and R.B. Peck (1923). “Soil Mechanics in Engineering Practice.”. 2nd. ed., John Wiley & Sons, New York.
18.Tzang, S. Y. (l992), “Water wave-induced soil fluidization in a cohesionless seabed.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.
19.Teh T.C. , A.C. Palmer and J.S.Damgaard (2003), “Experimental study of marine pipelines on unstable and liquefied seabed.” Coastal Eng., Vol. 50, pp.1-17.
20.Van Kessel, T. (1997), “Generation and transport of subaqueous fluid mud layers.” Ph. D. Dissertation, Dept. of Civil Engineering, Delft University of Technology, The Netherlands.
21.Yamamoto, T., H.L.K.H. Sellmeijer and E.V. Hijum (1978), “On the response of a pore-elastic bed to water waves.” J. Fluid Mech., Vol. 87, No. l, pp. 193-206.
22.胡金鵬、俞聿修、李本霞、張宇川 (2000),「斜向坡作用於直立堤上的橫向波浪力」,深水港建設技術研討會論文集。
23.閆澍旺、朱平、耿久月、程國勇、劉潤、纪玉城、孫紅月、馮軍 (2003),「長江口二期工程NIIB標段地基土動三軸試驗研究報告」。
24.蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
25.彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
26.簡德深 (2001),「簡諧波與線性波群引致之細砂質海床土壤液化反應與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
27.賴宏祐 (2002),「淺水之規則波與波群引致之細砂質海床液化與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
28.劉穎欣 (2002),「不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究」,國立成功大學水利及海洋工程學系碩士論文。
29.陳勇隆 (2003),「近液化底床波浪引致之懸浮漂砂傳輸特性初步研究」,國立成功大學水利及海洋工程學系碩士論文。
30.楊昀哲 (2004),「規則波引致單一矩形潛體前之液化細砂質海床行為試驗探討」,國立成功大學水利及海洋工程學系碩士論文。