| 研究生: |
陳惠姍 Chen, Huei-Shan |
|---|---|
| 論文名稱: |
數位控制切換式穩壓器之非線性轉換及補償技術研究 Study of Non-Linear Conversion and Compensation Schemes for Digitally-Controlled Switching Regulator |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 非線性轉換 、類比數位轉換器 、補償技術 、視窗型延遲線A/D 、數位控制切換穩壓器 |
| 外文關鍵詞: | non-linear conversion, analog-to-digital converter, compensation technique, window delay-line A/D, digitally-controlled switching regulator |
| 相關次數: | 點閱:102 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實作具非線性轉換及補償技術之數位控制切換式穩壓器。此穩壓器採用逐漸嶄露頭角的數位電源技術,並結合非均勻A/D轉換與補償技術,在不須額外的硬體實現下,提升了系統動態響應的性能。此外,基於結合上述兩非線性機制的穩定度分析結果,本論文亦深入探討如何開發一套自動搜尋最佳非線性參數之設計流程。最後以FPGA為實驗平台,進行量測並驗證所提出之概念的可行性,證明確實能提升暫態響應的性能,可改善在不同負載電流範圍下的暫態表現,結果與預期相符。另外,也設計具可調整解析度之視窗型延遲線A/D,轉換器除了說明操作原理並進行理論分析外,本研究亦提出一系統化之設計流程來達成系統規格的目標,最後經由TSMC 1P6M 0.18μm製程下線並整合至數位控制器進行驗證與量測。
In this thesis, a digitally-controlled switching regulator with non-linear conversion and compensation scheme is presented. Non-linear analog-to-digital conversion and compensation techniques are proposed to improve transient response without increasing hardware cost. The development of an optimum nonlinear parameters auto-search design flow is also discussed, with consideration to stability analysis regarding the combination of two nonlinear mechanisms. The dynamic response performance at different load current is verified with FPGA experimental results. Additionally, a window delay-line A/D with programmable resolutions is also introduced. The operation principle and theoretical analysis are illustrated in detail. Moreover, a systematic design flow for meeting system specifications is also proposed. The A/D has been fabricated in TSMC 0.18μm CMOS technology and verified as along with a digital controller.
8. 參考文獻
[1] H. Huanpao, “Nonlinear PID controller and its applications in power plants,” in Proc. IEEE International Conference on Power System Technology, 2002, pp. 1513-1517.
[2] G. Feng, E. Meyer, and Y.-F. Liu, “A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters,” IEEE Trans. Power Electronics, vol. 22, pp. 1489-1498, 2007.
[3] Z. Zhao and A. Prodic, “Continuous-time digital controller for high frequency DC-DC converters,” IEEE Trans. Power Electronics, vol. 23, pp. 564-573, 2008.
[4] L. Corradini, A. Costabeber, P. Mattavelli, and S. Saggini, “Parameter-independent time-optimal digital control for point-of-load converters,” IEEE Trans. Power Electronics, vol. 24, pp. 2235-2248, 2009.
[5] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2ed ed.: Springer, 2001.
[6] X. Zhang and D. Maksimovic, “Multi-mode digital controller for synchronous buck converters operating over wide ranges of input voltages and load currents,” IEEE Trans. Power Electronics, vol. 25, pp. 1958-1965, 2010.
[7] A. Radic, S. M. Ahsanuzzaman, A. Parayandeh, and A. Prodic, “Analog-to-digital converter for input voltage measurements in low-power digitally controlled switch-mode power supply converters,” in IEEE Proc. European Conference on Power Electronics and Applications, 2011, pp. 1-8.
[8] J.-H. Shiau, C.-H. Yang, and C.-H. Tsai, “Current-sensorless multi-mode digital DC-DC controller for portable applications,” in Proc. VLSI Design/CAD Symposium, 2011, Taiwan.
[9] H. Peng and D. Maksimovic, “Digital current-mode controller for DC-DC converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2005, pp. 899-905.
[10] M.-P. Chan and P. K. T. Mok, “Design and implementation of fully integrated digitally controlled current-mode buck converter,” IEEE Trans. Circuits Sys. I, vol. 58, pp. 1980-1991, 2011.
[11] O. Trescases, A. Prodic, and W. T. Ng, “Digitally controlled current mode DC-DC converter IC,” IEEE Trans. Circuits Sys. I, vol. 58, pp. 219–231, 2011.
[12] M. Rodriguez, V. M. Lopez, F.J. Azcondo, J. Sebastian, and D. Maksimovic, “Average inductor current sensor for digitally-controlled switched-mode power supplies,” IEEE Trans. Power Electronics, vol. 27, pp. 3795-3806, 2012.
[13] A. Prodic, et al. , “Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter,” in Proc. IEEE Industrial Electronics Conf., 2001, pp. 893-898 vol.2.
[14] A. Prodic and D. Maksimovic, “Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters,” in Proc. IEEE Computers in Power Electronics Conf., 2002, pp. 18-22.
[15] A. Syed, et al., “Digital pulse width modulator architectures,” in Proc. IEEE Power Electronics Spec. Conf., 2004, pp. 4689-4695 Vol.6.
[16] O. Trescases, et al., “A segmented digital pulse width modulator with self-calibration for low-power SMPS,” in Proc. IEEE Electron Devices and Solid-State Circuits Conf., 2005, pp. 367-370.
[17] A. V. Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM converters,” IEEE Trans. Power Electronics, vol. 18, pp. 301-308, 2003.
[18] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of quantization effects in digitally controlled dc–dc converters,” IEEE Trans. Power Electronics, vol. 22, pp. 208-215, 2007.
[19] Y.-C. Huang, H.-C. Chen, T.-J. Tai, and K.-H. Chen, “Dual-section average(DSA) analog-to-digital converter (ADC) in digital pulse width modulation (DPWM) DC-DC converter for reducing the problem of limiting cycle,” in Proc. IEEE Asian Solid State Circuits Conference, 2008, pp. 145-148.
[20] Z. Zhao and A. Prodic, “Non-zero error method for improving output voltage regulation of low-resolution digital controllers for SMPS,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1106-1110.
[21] Z. Lukic, N. Rahman, and A. Prodic, “Multibit Σ-∆ PWM digital controller IC for DC-DC converters operating at switching frequencies beyond 10 MHz,” IEEE Trans. Power Electronics, vol. 22, pp. 1693-1707, 2007.
[22] H. Hu, V. Yousefzadeh, and D. Maksimovic, “Nonuniform A/D quantization for improved dynamic responses of digitally controlled DC–DC converters,” IEEE Trans. Power Electronics, vol. 23, pp. 1998-2005, 2008.
[23] M. Barai, S. Sengupta, and J. Biswas, “Dual-mode multiple-band digital controller for high-frequency DC-DC converter,” IEEE Trans. Power Electronics, vol. 24, pp. 752-766, 2009.
[24] H. Peng and C. Chang, “A simple nonlinear gain scheduling method in digital PWM converter control,” in Proc. IEEE International Power Electronics and Motion Control Conference Electronics, 2009, pp. 331-336.
[25] Texas Instruments. UCD9240 [Online]. Available: http://focus.ti.com/docs/prod/folders/print/ucd9240.html
[26] Texas Instruments. TPS62675 [Online]. Available: http://www.ti.com/product/tps62675
[27] 劉俊男, “數位控制切換式直流-直流轉換器之補償器研究及人機介面設計工具開發,” 國立成功大學電機工程學系碩士論文, 2011.
[28] P. -H. Lan, C.-Y. Tseng, F.-C. Yeh, and P.-C. Huang, “A multi-mode digital controller with windowed ADC and self-calibrated DPWM for slew-enhanced switching converter,” in Proc. IEEE Asian Solid State Circuits Conference, 2010, pp. 1-4.
[29] M. He and J. Xu, “Nonlinear PID in digital controlled buck converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2007, pp. 1461-1465.
[30] V. Yousefzadeh and S. Choudhury, “Nonlinear digital PID controller for DC-DC converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1704-1709.
[31] Texas Instruments. UCD9112 [Online]. Available: http://focus.ti.com/docs/prod/folders/print/ucd9112.html
[32] V. P. Arikatla and J. A. Abu Qahouq, “Adaptive digital proportional-integral-derivative controller for power converters,” IET Power Electronics, vol. 5, pp. 341-348, 2012.
[33] B. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency digital PWM controller IC for DC-DC converters,” IEEE Trans. Power Electronics, vol. 18, pp. 438-446, 2003.
[34] M.-P. Chan and P. K. T. Mok, “Fully integrated digital controller IC for buck converter with a differential-sensing ADC,” in Proc. IEEE International Conference on Electron Devices and Solid-State Circuits, 2008, pp. 1-4.
[35] A. Parayandeh and A. Prodic, “Programmable analog-to-digital converter for low power DC-DC SMPS,” IEEE Trans. Power Electronics, vol. 23, pp. 500-505, 2008.
[36] P.-H. Lan, T.-J. Yang, and P.-C. Huang, “A high-efficiency, wide workload range, digital off-time modulation (DOTM) DC-DC converter with asynchronous power saving technique,” IEEE Transactions on Very Large Scale Integration (VLSI) System, pp. 1-11, 2011.
[37] T. H. Hsia, H. Y. Tsai, Y. C. Lin, D. Chen, and W. H. Chang, “Digital compensation of a high-frequency voltage-mode dc–dc converter,” in Proc. IEEE European Conference on Power Electronics and Applications, 2007, pp. 1–8.
[38] Y.-T. Chang and Y.-S. Lai, “Digital controller design for buck converter with the reduction of phase transition and output voltage oscillation under transient state,” in Proc. IEEE Power Electronics, Machines and Drives, 2008, pp.376-380.
[39] S. Saggini, et al. , “Fully-digital hysteretic voltage-mode control for dc-dc converters based onasynchronous sampling,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 503-509.
[40] A.G Perry, G. Feng, Y.-F. Liu, and P.C. Sen, “A Design Method for PI-like Fuzzy Logic Controllers for DC–DC Converter,” IEEE Trans. Industrial Electronics, vol. 54, pp. 2688-2696, 2007.