簡易檢索 / 詳目顯示

研究生: 許育晨
Hsu, Yu-Chen
論文名稱: 具寬輸入電壓範圍及低啟動電壓之升壓型直流-直流轉換器
A Boost Converter with Wide Input Voltage Range and Low Startup Voltage
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 低壓啟動升壓直流-直流轉換器
外文關鍵詞: low start-up voltage, step-up, boost, DC-DC converter
相關次數: 點閱:184下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一能操作在接近電晶體臨界電壓的極低輸入電壓下,並能在此低電壓下正常啟動之升壓型直流-直流轉換器。系統的啟動分為三個階段, 分別為起始延遲導通階段、開迴路啟動階段,以及閉迴路控制階段。在系統開始啟動時,利用起始延遲導通階段、以及使用環式震盪器控制的開迴路啟動階段,將輸出電壓升至足以驅動所有電路的電壓(2.5 V)以後,最後進入閉迴路的脈波頻率調變(PFM)控制。
    此晶片使用台灣積體電路公司0.35 μm 2P4M 3.3 V混合訊號製程,以32 S/B封裝,尺寸為1.125 × 2.14 mm2。設計規格輸入電壓範圍為0.7 V至3.2 V,輸出電壓為3.3 V,負載電流範圍為空載至200 mA。量測結果證明晶片可由1 V啟動,系統最大負載範圍為空載至200 mA,最高轉換效率約為74%。

    A boost DC-DC converter with a wide input voltage range and low start-up voltage is proposed in this thesis. The proposed converter is capable to startup successfully and operates correctly with a low input voltage. The start-up procedure is divided into three states - initial, open-loop, and closed-loop states. The output voltage can be boosted to 2.5 V, which is enough to drive most of the analog and digital circuits, during the initial state and the open-loop state. Then, the system enters the closed-loop state. The switching signals of the power switches are provided by ring oscillators during the open-loop state, and by the PFM modulator during the closed-loop state.
    The die area of this chip is 1.125 x 2.14 mm2, and it was fabricated by using Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 μm 2P4M 3.3 V mixed-signal polycide process. The input voltage of the converter ranges from 0.7 V to 3.2 V, and the output voltage is set to 3.3 V. According to the measurement results, the proposed system can be successfully powered up with a 1-V input voltage. The load current of the converter may range from zero to 200 mA, and the maximum conversion efficiency is around 74%.

    第一章 簡介 1 1.1 直流-直流轉換器概論 1 1.2 研究動機 3 1.3 論文架構 4 第二章 切換式直流-直流轉換器相關背景資料 5 2.1 規格及參數說明 5   2.1.1 輸入電壓 (Input Voltage) 5   2.1.2 輸出電壓漣波 (Output Voltage Ripple) 5   2.1.3 調節率 (Regulation) 5   2.1.4 暫態響應 (Transient Response) 7   2.1.5 效率 (Efficiency) 9   2.1.6 伏秒平衡定理 (Volt-Second Balance Principle) 10 2.2 切換式直流-直流轉換器架構種類 10   2.2.1 降壓型轉換器 (Buck Converter) 10   2.2.2 升壓型轉換器 (Boost Converter) 12 2.3 升壓型直流-直流轉換器操作模式 14   2.3.1 連續導通模式 15   2.3.2 邊界條件與不連續導通模式 15 2.4 控制方法 18   2.4.1 脈波寬度調變模式 (PWM) 18   2.4.2 脈波省略調變模式 (PSM) 19   2.4.3 脈波頻率調變模式 (PFM) 19 第三章 系統架構與電路設計 22 3.1 系統架構 22 3.2 系統操作模式 23 3.3 各電路區塊工作原理與電路設計 26   3.3.1參考電壓分壓電路 (Reference Voltage Dividing Circuit) 26   3.3.2 運算放大器 (Operational Amplifier, OP) 27   3.3.3 比較器 (Comparator) 28   3.3.4 SR閂 (SR Latch)與準位調整器 (Level Shifter) 31   3.3.5 最高電位選擇器 (High Voltage Selector) 33   3.3.6 環式震盪器 (Ring Oscillator) 34   3.3.7 不連續導通模態偵測電路 (DCM Detector) 36   3.3.8 電感電流偵測電路 (Current Sensing Circuit) 37   3.3.9 脈衝頻率調變電路 (Pulse Frequency Modulator) 38   3.3.10 訊號選擇器 (Signal Selector) 39   3.3.11停滯時間控制電路(Dead Time Controller) 40   3.3.12 緩衝器 (Buffer) 41   3.3.13 反震盪電路 (Anti-Ringing Circuit) 42 第四章 模擬結果與佈局考量 43 4.1 模擬結果 43 4.2 佈局考量 52 第五章 量測結果 54 5.1 量測儀器與量測考量 54 5.2 量測結果 55   5.2.1 環式震盪器 55   5.2.2 系統啟動與穩態波形 57   5.2.3 負載切換 (Load Change)與負載調節率 (Load Regulation) 60   5.2.4 輸入電壓調節率 (Line Regulation) 62   5.2.5 效率 63 5.3 系統規格 66 第六章 結論 69 參考文獻 70

    [1] H. F. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically integrated boost converter based on 0.5- m CMOS process,” IEEE Transactions on Power Electronics, vol. 20, no. 3, May 2005.
    [2] C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, November 2005.
    [3] Y. T. Wong, C. W. Ng, H. M. Wan, K. K. Kwong, Y. H. Lam, and W. H. Ki, “Near-threshold startup integrated boost converter with slew rate enhanced error amplifier,” in IEEE Symposium on Circuits and Systems, pp. 2409-2412, May 2009.
    [4] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing techniques,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, January 2004.
    [5] R. B. Ridley, “A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM,” in 21thAnnual IEEE Power Electronics Specialists Conference, pp. 382-389, June 1990.
    [6] R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Transactions on Power Electronics, vol. 6, no. 2, April 1991.
    [7] H. M. Chen, R. C. Chang, and C. L. Huang, “Low-voltage zero quiescent current PFM boost converter for portable devices,” in IEEE International SOC Conference, pp. 177-180, September 2007.
    [8] C. Y. Leung, K. T. Mok, and K. N. Leung, “An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator,” IEEE Transaction on Circuit and System-II: Express Briefs, vol. 52, no. 7, July 2005.
    [9] B. Arbetter, R. Erickson, and D. Maksimovic, “DC-DC converter design for battery-operated systems,” in Proceedings, IEEE 26th Annual Power Electronics Specialists Conference, vol. 1, pp. 103-109, June 1995.
    [10] P. Givelin, M. Bafleur, E. Tournier, T. Laopoulos, and S. Siskos, “Application of a CMOS current mode approach to on-chip current sensing in smart circuits,” in Proceedings, Institute Electrical Engineering: Circuits, Devices Systems, vol. 142, pp. 357-363, December 1995.
    [11] M. Corsi, “Current sensing schemes for use in BiCMOS integrated circuits,” in Proceedings, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 55-57, 1995.
    [12] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V Input Discontinuous-Conduction-Mode Boost Converter with CMOS-Control Rectifier,” IEEE Journal of Solid State Circuits, vol. 43, no. 9, pp. 2036-2046, September 2008.
    [13] B. Sahu, “Integrated, dynamically adaptive supplies for linear power amplifiers in portable applications,” Ph.D. dissertation, the Academic Faculty, Georgia Institute of Technology, U.S.A., November 2004.
    [14] F. F. Ma, “Advanced Control and Protection Techniques for DC-DC Switched Mode Power Supply IC Design,” Ph.D. dissertation, Department of Electronics Engineering and Institute of Electronics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan, July 2007.
    [15] D. Johns and K. Martin, Analog integrated circuit design. John Wiley & Sons, Inc., 1997.
    [16] P. E. Allen and D. R. Holberg, CMOS analog circuit design. Oxford, 2002.
    [17] B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill Education, 2002.
    [18] W. M. C. Sansen, Analog design essentials. Springer, 2008.
    [19] 梁適安, 交換式電源供給器之理論與實務設計. 全華圖書股份有限公司, 2008.
    [20] R. W. Erickson and D. Maksimovic’, Fundamentals of power electronics 2nd edition. Kluwer Academic Publishers, 2001.

    無法下載圖示 校內:2016-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE