| 研究生: |
戚文駿 Chi, Wen-Chun |
|---|---|
| 論文名稱: |
泛用型無位置感測器式永磁同步馬達驅動器之研究及其應用 A Study on General Purpose Position Sensorless PM Synchronous Motor Drives and Its Applications |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 無位置感測驅動技術 、電子煞車 、磁場導向控制 、永磁同步馬達 |
| 外文關鍵詞: | Sensorless Control, Electric Braking, Field-Oriented Control, Permanent-Magnet Synchronous Motors |
| 相關次數: | 點閱:107 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,欲實現永磁同步馬達的驅動控制,需要有馬達轉子的位置資訊,但加裝位置感測元件容易導致系統成本與裝置體積增加,且位置感測元件大都對於溫度與環境的變化較為敏感,導致在某些特殊應用場合中的可靠度不佳。為解決此問題,本論文針對永磁同步馬達驅動器開發出一泛用型無轉子位置感測器驅動技術。本論文提出基於等效反電動勢數學模型的滑動模式電流觀測器,藉由觀測器估測之反電動勢資訊,間接求得永磁同步馬達之轉子位置及速度。本論文所提出之滑動模式電流觀測器有良好的收斂速度,且估測之轉子位置資訊準確,並可使用於廣泛的轉速區域。尤其甚者,等效反電動勢數學模型僅需輸入馬達之相電阻與交軸相電感值即可,使本論文所提出之方法容易實現於低成本微控制器。此外,具備電子煞車功能之永磁同步馬達驅動器,不僅可使馬達在減速時有良好的速度響應,且可回收減速過程中的動能,增加能源的使用效率。在僅使用基本的永磁同步馬達驅動器電路架構下,本論文藉由改變功率元件的切換策略,實現三種適合不同煞車時機之無位置感測器式電子煞車切換策略,並針對最大升壓比、制動力矩等重要的電子煞車性能指標以進行分析討論。最後本論文藉由理論分析、並進行數個實驗與不同的應用,以驗證所提方法之可行性,實驗結果顯示本論文所提出之無位置感測器式磁場導向控制與電子煞車換相方法可適用於各種調速應用場合。
Generally, in order to implement the drive control of the PM synchronous motor, the rotor position information is essential. However, position sensors may increase the cost and volume of the motor system due to the extra components and wiring. Moreover, most position sensors are sensitive to change in ambient temperature. As a result, the reliability of the position sensor based approach is far from satisfactory in some specific applications. In order to alleviate the above problem, this dissertation develops a general purpose position sensorless method for PM synchronous motor drives. This dissertation proposes a sliding-mode current observer based on a general purpose equivalent back-EMF model. By using the back-EMF estimated from the sliding-mode current observer, one can indirectly obtain the information of the angular position and velocity of the rotor. The estimated rotor position is accurate, and fast convergence of the observer is guaranteed over a wide speed range. Moreover, only stator resistance and stator inductances in the q-axis are essential to the calculation of the general purpose equivalent back-EMF, which is easy to implement in low-cost microcontrollers. In addition, the drives of PM synchronous motors capable of electric braking not only allow the motors to smoothly decelerate to a soft stop, but also can recover kinetic energy so as to improve the efficiency of energy consumption. In order to conduct an in-depth study on this topic, this dissertation analyzes and implements three possible position sensorless electric braking commutation strategies based on a general full-bridge motor drive without any additional power switches and bulky passive components. For the position sensorless electric braking commutation strategies, theoretical analysis on different performance indices such as maximum voltage conversion ratio, braking torque, energy recovery ratio, etc., are carried out and compared among each commutation strategy. Finally, theoretical analysis, several experiments and various applications are performed to verify the effectiveness of the proposed methods. Experimental results indicate that the proposed position sensorless FOC and electric braking commutation methods are suitable for various speed regulation applications.
[1] M. Ahmad, High Performance AC Drives. New York: Springer-Verlag, 2010.
[2] T. J. E. Miller, Brushless Permanent-Magnet and Reluctance Motor Drives. USA: Oxford University Press, 1989.
[3] K. T. Chau, C. C. Chan, and C. Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2246-2257, Jun. 2008.
[4] D. W. Novotny, and T. A. Lipo, Vector Control & Dynamics of AC Drives. USA: Oxford University Press, 1996.
[5] T. M. John, “Motion Control with Permanent-Magnet AC Machines,” Proc. of the IEEE, vol. 82, no. 8, pp.1241-1252, Aug. 1994.
[6] P. Vas, Sensorless Vector and Direct Torque Control. Oxford University Press, 1998.
[7] M. Ehsani, Y. Gao, S. E. Gay, and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory and Design. Florida, USA: CRC Press LLC, 2005.
[8] B. K. Bose, and B. Bose, “Power Electronics and Motion Control - Technology Status and Recent Trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 902-909, Sep./Oct. 1993.
[9] P. Pillay, and R. Krishnan, “Application Characteristics of Permanent Magnet Synchronous and Brushless DC Motor for Servo Drive,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[10] T. M. Jahns, and V. Blasko, “Recent Advances in Power Electronics Technology for Industrial and Traction Machine Drives,” Proc. of the IEEE, vol. 89, no. 6, pp. 963-975, Jun. 2001.
[11] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The Performance Comparison of SPMSM, IPMSM and SynRM in Use as Air-Conditioning Compressor,” in Proc. IEEE Industry Applications Conf., pp. 840-845, Oct. 1999.
[12] D. Hanselman, Brushless Permanent Magnet Motor Design. Cranston, RI: The Writers’ Collective, 2003.
[13] G. Pellegrino, A. Vagati, P. Guglielmi, and B. Boazzo, “Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 803-811, Feb. 2012.
[14] J. W. Finch, and D. Giaouris, “Controlled AC Electrical Drives,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 481-491, Feb. 2008.
[15] P. P. Acarnley, and J. F. Watson, “Review of Position-Sensorless Operation of Brushless Permanent-Magnet machines,” IEEE Trans. Indus. Electron., vol. 53, no. 2, pp. 352-362. Apr. 2006.
[16] J. Holtz, “Sensorless Control of Induction Motor Drives,” Proc. of the IEEE, vol. 90, no. 8, pp. 1359-1394. Aug. 2002.
[17] S. L. Herman, Electric Motor Control. Cengage Learning, 2009.
[18] A. Fuhs, Hybrid Vehicles: and the Future of Personal Transportation. CRC Press, 2008.
[19] C. H. Chen, and M. Y. Cheng, “Design and Implementation of a High-Performance Bidirectional DC/AC Converter for Advanced EVs/HEVs,” IEE Proc.-Electr. Power Appl., vol. 153, no. 1, pp.140-148, Jan. 2006.
[20] C. H. Chen, and M. Y. Cheng, “Implementation of a Highly Reliable Hybrid Electric Scooter Drive,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp.2462-2473, Oct. 2007.
[21] S. Kim, J. I. Ha, and S. K. Sul, “PWM Switching Frequency Signal Injection Sensorless Method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 5, pp.1576-1587, Sep./Oct., 2012.
[22] J. L. Chen, S. K. Tseng, and T. H. Liu, “Implementation of High-performance Sensorless Interior Permanent-Magnet Synchronous Motor Control Systems Using a High-Frequency Injection Technique,” IET Electr. Power Appl., vol. 6, no. 8, pp. 533-544, 2012.
[23] P. L. Jansen, and R.D. Lorenz, “Transducerless Position and Velocity Estimation in Induction and Salient AC Machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, Mar./Apr. 1995.
[24] D. Raca, M. C. Harke, and R. D. Lorenz, “Robust Magnet Polarity Estimation for Initialization of PM Synchronous Machines With Near-Zero Saliency,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1199-1209, July/Aug. 2008.
[25] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless Control of IPM Motors in the Low-Speed Range and at Standstill by HF Injection and DFT Processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, Jan./Feb. 2011.
[26] M. J. Corey, and R. D. Lorenz, “Rotor Position and Velocity Estimation for a Salient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 784-789, Jul./Aug., 1998.
[27] J. I. Ha, and S. K. Sul, “Sensorless Field-Orientation Control of an Induction Machine by High-Frequency Signal Injection,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 45-51, Jan./Feb. 1999.
[28] M. Schroedl, “Sensorless Control of AC Machines at Low Speed and Standstill Based on the “INFORM” Method,” in Proc. IEEE Industry Applications Conf., pp. 270-277, Oct. 1996.
[29] N. Bianchi, S. Bolognani, J. H. Jang, and S. K. Sul, “Advantages of Inset PM Machines for Zero-Speed Sensorless Position Detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1190-1198, July/Aug. 2008.
[30] G. Wang, R. Yang, and D. Xu, “DSP-Based Control of Sensorless IPMSM Drives for Wide-Speed-Rang Operation,” IEEE Trans. Indus. Electron., vol. 60, no. 2, pp.720-727, Feb. 2013.
[31] J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astolfi, “Sensorless Control of Surface-Mount Permanent-Magnet Synchronous Motors Based on Nonlinear Observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-653. Feb. 2010.
[32] P. Tomei, and C. M. Verrelli, “Observer-Based Speed Tracking Control for Sensorless Permanent Magnet Synchronous Motors With Unknown Load Torque,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1484-1488. Jun. 2011.
[33] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A Combined Position and Stator-Resistance Observer for Salient PMSM Drives: Design and Stability Analysis,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 290-653. Feb. 2012.
[34] R. Ortega, L. Praly, A. Astolfi, and J. Lee, “Estimation of Rotor Position and Speed of Permanent Magnet Synchronous Motors With Guaranteed Stability,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 601-614. May 2011.
[35] J. L. Chen, T. H. Liu, C. L. Chen, “Design and Implementation of a Novel High-Performance Sensorless Control System for Interior Permanent Magnet Synchronous Motors,” IET Electr. Power Appl., vol. 4, no. 4, pp. 226-240, Apr. 2010.
[36] M. Cirrincione, and M. Pucci, “An MRAS-Based Sensorless High Performance Induction Motor Drive With a Predictive Adaptive Model,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 532-551, Apr. 2005.
[37] S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman Filter Tuning in Sensorless PMSM Drives,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1741-1747, Nov./Dec. 2003.
[38] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-Sensorless Estimation for Induction Motors Using Extended Kalman Filters,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 272-280, Feb. 2007.
[39] S. M. Gadoue, D. Giaouris, and J. W. Finch, “MRAS Sensorless Vector Control of an Induction Motor Using New Sliding-Mode and Fuzzy-Logic Adaptation Mechanisms,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 394-402, Jun. 2010.
[40] T. Bernardes, V. F. Montagner, H. A. Grundling, and H. Pinheiro, “Discrete-Time Sliding Mode Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine,” IEEE Trans. Indus. Electron., vol. 61, no. 4, pp. 1679-1691, Apr. 2014.
[41] S. Chi, Z. Zhang, and L. Xu, “Sliding-Mode Sensorless Control of Direct-Drive PM Synchronous Motors for Washing Machine Applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, Mar./Apr. 2009.
[42] H. Kim, J. Son, and J. Lee, “A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM,” IEEE Trans. Indus. Electron., vol. 58, no. 9, pp. 4069-4076, Sep. 2011.
[43] Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, and X. He, “New Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor,” IEEE Trans. Indus. Electron., vol. 60, no. 2, pp. 710-719, Feb. 2013.
[44] H. Lee, and J. Lee, “ Design of Iterative Sliding Mode Observer for Sensorless PMSM Control,” IEEE Trans. Control Syst. Technol., vol. 21, no. 4, pp. 1394-1399. Jul. 2013.
[45] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless Control of Permanent-Magnet Synchronous Motors Using Online Parameter Identification Based on System Identification Theory,” IEEE Trans. Indus. Electron., vol. 53, no. 2, pp. 363-372, Apr. 2006.
[46] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless Control Strategy for Salient-Pole PMSM Based on Extended EMF in Rotating Reference Frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, Jul./Aug. 2002.
[47] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An Extended Electromotive Force Model for Sensorless Control of Interior Permanent-Magnet Synchronous Motors,” IEEE Trans. Indus. Electron., vol. 50, no. 2, pp. 288-295, Apr. 2003.
[48] M. Ye, Z. Bai, and B. Cao, “Robust Control for Regenerative Braking of Battery Electric Vehicle,” IET Control Theory & Appl., vol. 2, no. 12, pp1105-1114, Dec. 2008.
[49] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237-2245, Jun. 2008.
[50] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “Design and New Control of DC/DC Converters to Share Energy Between Supercapacitors and Batteries in Hybrid Vehicles,” IEEE Trans. Vehicular Technol., vol. 57, no. 5, pp. 2721-2735, Sep. 2008.
[51] J. Moreno, M. E. Ortúzar, and J. W. Dixon, “Energy-Management System for a Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 614-623, Apr. 2006.
[52] S. Lu, K. A. Corzine, and M. Ferdowsi, “A New Battery/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles,” IEEE Trans. Vehicular Technol., vol. 56, no. 4, pp. 1516-1523, Jul. 2007.
[53] P. J. Grbovi´c, P. Delarue, P. L. Moigne, and P. Bartholomeus, “Modeling and Control of the Ultracapacitor-Based Regenerative Controlled Electric Drives,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3471-3484, Aug. 2011.
[54] P. J. Grbovi´c, P. Delarue, P. L. Moigne, and P. Bartholomeus, “A Three-Terminal Ultracapacitor-Based Energy Storage and PFC Device for Regenerative Controlled Electric Drives,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 301-316, Jan. 2012.
[55] M. Ortúzar, J. Moreno, and J. Dixon, “Ultracapacitor-Based Auxiliary Energy System for an Electric Vehicle: Implementation and Evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, Aug. 2007.
[56] S. M. Kim, and S. K. Sul, “Control of Rubber Tyred Gantry Crane With Energy Storage Based on Supercapacitor Bank,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1420-1427, Sep. 2006.
[57] C. Choi, C. F. Driscoll, and E. Romberg, “Comparison of Cutting Efficiencies Between Electric and Air-Turbine Dental Handpieces,” The Journal of Prosthetic Dentistry, vol. 103, no. 2, pp. 101-107, Feb. 2010.
[58] B. J. Kenyon, I. V. Zyl, and K. G. Louie, “Comparison of Cavity Preparation Quality Using an Electric Motor Handpiece and an Airturbine Dental Handpiece,” The Journal of the American Dental Association, vol. 136, no. 8, pp. 1101-1105, Aug. 2005.
[59] A. Šabanovic, “Variable Structure System With Sliding Modes in Motion Control – A Survey,” IEEE Trans. Indus. Inform., vol. 7, no. 2, pp. 212-223, Jul. 2013.
[60] B. Bandyopadhyay, F. Deepak, and K. S. Kim, Sliding Mode Control Using Novel Sliding Surfaces. Springer; 2010.
[61] V. I. Utkin, “Sliding Mode Control Design Principles and Applications to Electric Drives,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, Feb. 1993.
[62] S. Ryvkin, and E. P. Lever, Sliding Mode Control for Synchronous Electric Drives. CRC Press, 2011.
[63] A. Khlaief, M. Bendjedia, M. Boussak, and M. Gossa, “A Nonlinear Observer for High-Performance Sensorless Speed Control of IPMSM Drive,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2368-2378, Jun. 2012.
[64] J. L. Shi, T. H. Liu, and Y. C. Chang, “Position Control of an Interior Permanent-Magnet Synchronous Motor Without Using a Shaft Position Sensor,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1989-2000, Aug. 2007.
[65] M. Hasegawa, and K. Matsui, “Position Sensorless Control for Interior Permanent Magnet Synchronous Motor Using Adaptive Flux Observer With Inductance Identification,” IET Electr. Power Appl., vol. 3, no. 3, pp. 209-217, May 2013.
[66] J. Liu, T. A. Nondahl, P. B. Schmidt, S. Royak, and M. Harbaugh, “Rotor Position Estimation for Synchronous Machines Based on Equivalent EMF,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1310-1318, May/Jun. 2011.
[67] W. C. Chi, and M. Y. Cheng, “Implementation of a Sliding-Mode-Based Position Sensorless Drive for High-Speed Micro Permanent-Magnet Synchronous Motors,” ISA Transactions, vol. 53, no. 2, pp. 444-453, Mar. 2014.
[68] P. Champa, P. Somsiri, P. Wipasuramonton, and P. Nakmahachalasint, “Initial Rotor Position Estimation for Sensorless Brushless DC Drives,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1318-1324, Jul./Aug. 2009.
[69] W. J. Lee, and S. K. Sul, “A New Starting Method of BLDC Motors Without Position Sensor,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1532-1538, Nov./Dec. 2006.
[70] M. Tursini, R. Petrella, and F. Parasiliti, “Initial Rotor Position Estimation Method for PM Motors,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1630-1640, Nov./Dec. 2003.
[71] O. Scaglione, M. Markovic, and Y. Perriard, “First-Pulse Technique for Brushless DC Motor Standstill Position Detection Based on Iron B-H Hysteresis,” IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2319-2328, May 2012.
[72] Y. Wang, X. Zhang, X. Yuan, and G. Liu, “Position-Sensorless Hybrid Sliding-Mode Control of Electric Vehicles With Brushless DC Motor,” IEEE Trans. Vehicular Technol., vol. 60, no. 2, pp. 421-432, Feb. 2011.
[73] P. Damodharan, and K. Vasudevan, “Sensorless Brushless DC Motor Drive Based on the Zero-Crossing Detection of Back Electromotive Force (EMF) From the Line Voltage Difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668, Sep. 2010.
[74] J. B. Cao, and B. G. Cao, “Fuzzy-Logic-Based Sliding-Mode Controller Design for Position-Sensorless Electric Vehicle,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2368-2378, Oct. 2009.
[75] W. C. Chi, M. Y. Cheng, and C. H. Chen, “Position-Sensorless Method for Electric Braking Commutation of Brushless DC Machines,” IET Electr. Power Appl., vol. 7, no. 9, pp. 701-713, Nov. 2013.
[76] M. P. Ćalasan, D. S. Petrović, and M. M. Ostojić, “Electrical Braking of Synchronous Generators for Combined Generator and Water Turbine Bearings as well as Stray-Load Losses Determination,” IET Electr. Power Appl., vol. 7, no. 4, pp. 313-320, Apr. 2013.
[77] N. Mutoh, Y. Hayano, H. Yahagi, and K. Takita, “Electric Braking Control Methods for Electric Vehicles With Independently Driven Front and Rear Wheels,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1168-1176, Apr. 2007.
[78] M. J. Yang, H. L. Jhou, B. Y. Ma and K. K. Shyu, “A Cost-Effective Method of Electric Brake with Energy Regeneration for Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2203-2212, Jun. 2009.
[79] P. Bajec, B. Pevec, D. Voncina, D. Miljavec, and J. Nastran, “Extending the Low-Speed Operation Range of PM Generator in Automotive Applications Using Novel AC–DC Converter Control,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 436-443, Apr. 2005.
[80] R. C. Becera, M Ehsani and T. M. Jahns, “Four-Quadrant Brushless ECM Drive with Integrated Current Regulation,” IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 833-841, Aug. 1992.
[81] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A Novel Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Fuel Pumps,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1734-1740, Nov./Dec. 2003.
[82] J. Shao, “An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1216-1221, Sep./Oct. 2006.
[83] . Wu, Z. Deng, X. Wang, X. Ling, and X. Cao, “Position Sensorless Control Based on Coordinate Transformation for Brushless DC Motor Drives,” IEEE Trans. Power Electron., vol. 25, no. 9, pp.2365-2371, Sep. 2010.
[84] C. H. Chen, and M. Y. Cheng, “A New Cost Effective Sensorless Commutation Method for Brushless DC Motors Without Phase Shift Circuit and Neutral Voltage,” IEEE Trans. Power Electron., vol. 22, no. 2, pp.644-653, Mar. 2007.
[85] C. H. Chen, and M. Y. Cheng, “Design of a Multi-Speed Winding for Brushless DC Motor and Its Sensorless Control,” IEE Proc.-Electr. Power Appl., vol. 153, no. 6, pp.834-841, Nov. 2006.
校內:2017-07-28公開