| 研究生: |
賴睿澤 Lai, Jui-Tse |
|---|---|
| 論文名稱: |
採用靜態同步補償器結合基於全釩氧化還原液流電池之儲能系統於抑制混合蒸氣渦輪機與離岸風場之次同步共振現象 Suppression of Subsynchronous Resonance in a Hybrid Steam-Turbine Generator and Offshore Wind Farm Using a Static Synchronous Compensator Joined with a Vanadium Redox Flow Battery-Based Energy Storage System |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 264 |
| 中文關鍵詞: | 次同步共振 、靜態同步補償器 、全釩氧化還原液流電池 、離岸風場 、雙饋式感應發電機 |
| 外文關鍵詞: | Static synchronous compensator, vanadium redox flow battery, subsynchronous resonance, offshore wind farm, doubly-fed induction generator |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究採用靜態同步補償器之控制器結合基於全釩氧化還原液流電池之儲能系統,來抑制混合蒸汽渦輪機以及風力渦輪機發電系統之次同步共振現象。本論文於三相平衡下,利用直-交軸等效電路建立系統模型,包含:同步發電機、基於雙饋式感應發電機之離岸式風場、靜態同步補償器以及基於全釩氧化還原液流電池之儲能系統等模型,並利用極點安置法設計靜態同步補償控制器之比例-積分-微分阻尼控制器。在系統小訊號穩定度方面,針對傳輸線路之串聯補償比、同步發電機之輸出實功率、端電壓、功率因數及基於全釩氧化還原液流電池之儲能系統容量變動等工作點變化之頻域特徵值分析;在系統動態與暫態模擬分析方面,完成轉矩干擾、風速變動及三相短路故障等模擬結果。由系統小訊號穩定度、動態及暫態模擬結果可以得知,當加入靜態同步補償控制器結合比例-積分-微分阻尼控制器後,能使所研究系統恢復至穩定,並有效抑制系統次同步共振現象。
This thesis presents a study on the suppression of subsynchronous resonance (SSR) in a hybrid steam-turbine generator and offshore wind farm (OWF) using a static synchronous compensator (STATCOM) joined with a vanadium redox flow battery (VRFB)-based energy storage system (ESS). The research is conducted under balanced three-phase condition using a d-q axis equivalent-circuit model including synchronous generators, a doubly-fed induction generator (DFIG)-based OWF, STATCOM, VRFB-based ESS, and other system models. A proportional-integral-derivative (PID) damping controller for the STATCOM is designed using a pole-assignment approach based on modal control theory. The study includes small-signal stability analysis and transient simulation results of the studied system. The simulation results demonstrate that the proposed STATCOM joined with the designed PID damping controller is effective in suppressing SSR in the investigated power system.
[1] T. Ackeman, Wind Power in Power Systems, John Wiley & Sons, 2005.
[2] M. H. Bashi, L. De Tommasi and P. Lyons, “Electricity market integration of utility-scale battery energy storage units in Ireland, the status and future regulatory frameworks,” Journal of Energy Storage, vol. 55, no. 1, pp. 105442, Nov. 2022.
[3] Y. N. Yu, Electric Power System Dynamics, New York: Academic Press, 1983.
[4] P. M. Anderson, B. L. Agrawal, and J. E. Van Ness, Subsynchronous Resonance in Power Systems, New York: IEEE Press, 1990.
[5] M. C. Hall and D. A. Hodges, Experience with 500 kV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generation Station, New York: IEEE Press, 1976.
[6] D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of subsynchronous resonance tests at Mohave,” IEEE Trans. Power Apparatus and Systems, vol. 94, no. 5, pp. 1878-1885, Sep./Oct. 1975.
[7] IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. 96, no. 5, pp. 1565-1572, Sep./Oct. 1977.
[8] IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. 140, no. 5, pp. 1057-1066, May 1985.
[9] S. G. Jalali, R. H. Lasseter, and I. Dobson, “Dynamic response of a thyristor controlled switched capacitor,” IEEE Trans. Power Delivery, vol. 9, no. 3, pp. 1609-1615, Jul. 1994.
[10] ABB, “Fixed series compensation,” [Online]. Available: http://new.abb.com/facts/fixed-series-compensation, retrieved date: Mar. 15, 2018.
[11] Yang Zhang, Yuqing Wang, Donghui Zhang, Xin Chen, and Chunying Gong, “Broadband impedance shaping control scheme of MMC-based STATCOM for improving the stability of the wind farm,” IEEE Transactions on power electronics, vol. 36, no. 9, pp. 10278-10292, Sep. 2021.
[12] Xi Wu, Mengting Wang, Mohammad Shahidehpour, Shuang Feng, and Xi Chen,“Model-free adaptive control of STATCOM for SSO mitigation in DFIG-based wind farm,” IEEE Transactions on power systems, vol. 36, no. 6, pp. 5282-5293, Nov. 2021.
[13] Akshaya Moharana, Rajiv K. Varma, and Ravi Seethapathy,“SSR alleviation by STATCOM in induction-generator-based wind farm connected to series compensated line,” IEEE Transactions on sustainable energy, vol. 5, no. 3, pp. 947-957, Apr. 2014.
[14] Tushar Kanti Roy, Subarto Kumar Ghosh, Md Shamim Anower, Md Apel Mahmud, Rajesh Kumar, and Akash Saxena, “Mitigation of SSR in series-compensated DFIG-based wind farms with STATCOMs using a nonlinear backstepping control scheme,” in Proc. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, Dec. 16-19, 2020, pp. 1-6.
[15] Benfeng Gao and Yunting Hu, “Sub-synchronous resonance mitigation by a STATCOM in doubly fed induction generator-based wind farm connected to a series-compensated transmission network,” IET The Journal of Engineering, vol. 2019, no.16, pp.812-815, Mar. 2019.
[16] L. L. Fan and Z. Miao, “Mitigating SSR using DFIG-based wind generation,” IEEE Trans. Sustainable Energy, vol. 3, no. 3, pp. 349-358, Jul. 2012.
[17] Farshid Salehi, Amir Golshani, Igor Brandão Machado Matsuo, Payman Dehghanian, Mehriar Aghazadeh Tabrizi, and Wei-Jen Lee, “Mitigating SSR using DFIG-based wind generation,” IEEE Trans. Industrial Informatics, vol. 18, no. 7, pp.4372-4382, Jul. 2022.
[18] Jun Yao, Xuewei Wang, Jiawei Li, Ruikuo Liu, and Hailin Zhang, “Sub-synchronous resonance damping control for series-compensated DFIG-based wind farm with improved particle swarm optimization algorithm,” IEEE Trans. Energy Conversion, vol. 34, no. 2, pp.849-859, Sep. 2018.
[19] K. V. Patil, J. Senthil, J. Jiang, and R.M. Mathur, “Application of STATCOM for damping torsional oscillations in series compensated AC systems,” IEEE Trans. Energy Conversion, vol. 13, no. 3, Sep. 1998.
[20] G. Li, Y. Chen, A. Luo, and H. Wang, “An enhancing grid stiffness control strategy of STATCOM/BESS for damping sub-synchronous resonance in wind farm connected to weak grid,” IEEE Trans. Industrial Informatics, vol. 16, no. 9, pp. 5835-5845, Sep. 2020.
[21] Mohamed S. El-Moursi, Birgitte Bak-Jensen, and Mansour H. Abdel-Rahman, “Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park,” IEEE Trans. Power Electronics, vol. 25, no. 2, pp. 429-441, Feb. 2010.
[22] K. R. Padiyar and Nagesh Prabhu, “Design and performance evaluation of subsynchronous damping controller with STATCOM,” IEEE Trans. Power Delivery, vol. 21, no. 3, pp.1398-1405, Jun. 2006.
[23] Amir Ghorbani, Babak Mozaffari, and A.M. Ranjbar, “Application of subsynchronous damping controller (SSDC) to STATCOM,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 418-426, Dec. 2012.
[24] IEEE Committee Report, “Computer representation of excitation systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-87, no. 6, pp. 1460-1464, Jun. 1968.
[25] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
[26] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
[27] P. C. Krause, Analysis of Electric Machinery, New York, NY, USA: McGraw-Hill, 1986.
[28] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,2011年6月。
[29] X. Qiu, T. A. Nguyen, J. D. Guggenberger, M. L. Crow, and A. C. Elmore, “A field validated model of a vanadium redox flow battery for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp.1592-1601, Jun. 2014.
[30] C. Blanc and A. Rufer, “Multiphysics and energetic modeling of a vanadium redox flow battery,” in Proc. 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, Nov. 24-27, 2008, pp. 696-701.
[31] J. A. Chahwan, C. Abbey, and G. Joos, “VRB modelling for the study of output terminal voltages, internal losses and performance,” in Proc. 2007 IEEE Canada Electrical Power Conference, Montreal, Quebec, Canada, Oct. 25-26, 2007, pp. 387-392.
[32] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007.
[33] R. D‘Agostino, L. Baumann, A. Damiano, and E. Boggasch, “A vanadium-redox-flow-battery model for evaluation of distributed storage implementation in residential energy systems,” IEEE Trans. Energy Conversion, vol. 30, no. 2, pp. 421-430, Jun. 2015.
[34] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Oct. 2010.
[35] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
[36] R. K. Varma, Y. Semsedini, and S. Auddy, “Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers,” IEEE Trans. Power Delivery, vol. 23, no. 3, pp. 1645-1654, Jul. 2008.
[37] K. T. Khu, “Subsynchronous resonance in power systems: damping of torsional pscillations,” Ph.D dissertation, Department of Electronic Engineering, Iowa State University, Ames, IA, USA, 1977.
[38] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
[39] 馮文凱,採用線間功率潮流控制器於抑制混合蒸氣渦輪機與離岸風渦輪發電系統之次同步共振,國立成功大學電機工程研究所碩士論文,2019年七月。
[40] 曾世穎,採用統一功率潮流控制器於抑制混合蒸氣渦輪機與離岸風渦輪發電系統之次同步共振,國立成功大學電機工程研究所碩士論文,2018年七月。
[41] 官秉霖,採用串聯向量補償器於抑制混和式離岸風場之次同步共振,國立成功大學電機工程研究所碩士論文,2017年七月。
[42] 尤乾祥,抑制次同步共振,國立成功大學電機工程研究所碩士論文,2016年七月。
[43] 王鈺翔,雙饋式感應發電機風場之次同步共振現象改善,國立成功大學電機工程研究所碩士論文,2015年六月。
[44] 呂杰龍,利用閘控串聯電容器於抑制混和蒸氣渦輪機與風渦輪機發電系統之次同步共振,國立成功大學電機工程研究所碩士論文,2013年六月。
校內:2028-07-18公開