簡易檢索 / 詳目顯示

研究生: 張家誌
Chang, Chia-Chih
論文名稱: 應用地文性淹排水模式提升鹽田濕地之棲地品質-以七股鹽田濕地為例
Habitat Quality Improvement of Salt Pan Wetland through Physiographic Drainage-Inundation Model : Case Study at Qigu Salt Pan Wetland
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 144
中文關鍵詞: 鹽田濕地地文性淹排水模式水門操作提升棲地品質
外文關鍵詞: Salt pan wetland, PHD Model, Water gate operation, habitat improvement
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 七股鹽田濕地位於台南市七股區,原屬於鹽業用地,在2002年全面廢曬後,因其豐富的生態環境,於2007年被評定為國家級重要濕地。七股鹽田濕地中大多數為廢曬鹽田,這些廢曬後的鹽田產生的大片濕地可以作為多樣的生物棲息、覓食及繁殖等替代性棲地。然而早期曬鹽時為了避免受到潮汐影響,鹽田大多規劃成封閉式的設計,在鹽田全面廢曬後,因疏於管理及使用,在非汛期缺乏降雨的情況下,時常造成鹽田內呈現水位過低的狀態,進而產生鹽田內水質不佳、鹽度過高等問題,這些問題會限制生物利用這些人為棲地的可能性。
    因此本研究希望透過不同的水門操作策略來滿足提升棲地品質與周遭村落防洪這兩個需求,同時也會探討工程方法改變棲地現狀對於水門操作的影響。本研究將引水操作設計成2種情境,排水操作則依照各月份的潮汐關係,分成6種狀況,不同重現期的降雨情境則用以評估引水操作對於鹽田滯洪功能的影響。在確定水門操作策略後,本研究會再設計涵洞疏通、擋土移除、改變高程,這三種工程方法來進行棲地改善。
    模擬結果顯示,如果將鹽田旁的蓄水池也納入引水操作的範圍內,可以達成持續常態引水的狀態,鹽田內的水會隨著水門外的潮汐波動使鹽田形成類感潮濕地;從排水情境結果中發現,1月是最容易排水的月份,八月則是最難的月份,由於降雨事件大多發生在夏季,因此本研究建議夏季時只要沒有降雨事件,就進行排水操作,讓鹽田水位維持在低水位的狀態;從降雨模擬中則發現,長時間的引水操作並不會增加周遭村落淹水的風險。工程情境的結果中則顯示,涵洞疏通能讓鹽田內的水循環稍加流暢,移除渠道中的擋土,不管在任何情境,水深皆沒有任何變化,改變高程不僅能增加鹽田的滯洪空間,也能明顯提升鹽田內的水域面積。以上情境皆應用地文性淹排水模式來進行模擬並來觀察研究區域內的水深變化,提供未來利用水門操作或工程手段提升鹽田棲地品質的相關研究一個參考。

    The Qigu salt pan wetland is located in the Qigu District, Tainan City, which originally belonged to the salt industry. After being completely abandoned in 2002, due to its rich ecological environment, it was announced as a national-level important wetland in 2007. Most of the Qigu salt pans are abandoned salt pans. The large wetlands produced by these abandoned salt pans can be used as alternative habitats for a variety of biological habitats, foraging and reproduction. However, in order to avoid being affected by the tide when salt making in the early years, most of the salt pans were built as closed designs. After the salt pans were completely abandoned, due to neglect of management and use, in non-flood period, the water level in the salt pans was often too low because of poor rainfall, resulting in poor water quality and excessive salinity in the salt pans. These problems will limit the possibility of biological use of these anthropogenic habitats.
    Therefore, this study hoped to satisfy the two needs of improving the quality of the salt pan habitat and flood prevention in the surrounding villages through different water gate operation strategies. At the same time, this study would also discuss the impact of engineering methods to change the condition of the habitat on the operation of the water gate. In this study, the water inflow operation was designed into 2 scenarios, and the draining operation was divided into 6 scenarios according to the tidal relationship of each month. The rainfall scenarios with different return periods were used to assess the impact of water inflow operation on the flood detention function of salt pans. After determining the water gate operation strategy, this study would design culvert dredging, mound removal, and elevation change, these three engineering methods to improve habitat and gave the suggestion from the results.
    The water inflow operation simulation results showed that if the detention pond next to the salt pan was also included in the scope of the water inflow operation, the state of continuous water inflow can be achieved.;From the results of the draining scenario, it was found that January was the easiest month to drain, and August was the most difficult month. Since rainfall events mostly occur in summer, so this study suggested that as long as there was no rainfall event in summer, draining operations should be carried out to keep the salt pan water level at a low water level.;The water in the salt pan would follow the tidal fluctuations outside the water gate to make the salt pan become a kind of tidal wetland. From the rainfall simulation, it was found that the long duration water inflow operation did not increase the risk of flooding in the surrounding villages;The results of the engineering scenario showed that the culvert dredging could make the water circulation in the salt pan a little smoother. Remove the mound in the channel, no matter in any scenario, there was no change in the water depth of salt pan. Changing the elevation could not only increase the flood detention capacity of the salt pan, but also significantly increased the water area in the salt pan. The above scenarios were all simulated using physiographic drainage-inundation model to observe the changes in water depth in the study area. This study hoped to provide a reference for future related research on the use of water gate operations or engineering methods to improve the quality of habitats.

    Abstract Ⅰ Acknowledgments Ⅴ List of Tables Ⅹ List of Figure ⅩⅠ Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Purpose 3 1.3 Architecture of Article 3 Chapter 2 Literature Review 6 2.1 Wetland Definition 6 2.2 Environmental Factors Affecting Organisms in Wetlands 6 2.3 Impact of Gate Operation on Habitat 8 2.4 Physical Inundation Drainage Model Application 11 2.5 Summary 12 Chapter 3 Research Area and Methods 14 3.1 Study Area 14 3.1.1 Geographic Overview 17 3.1.2 Hydrological Overview 20 3.2 Data Collection 23 3.2.1 Current Condition 23 3.2.2 Water Depth 29 3.2.3 Tide Level 30 3.2.4 Elevation 32 3.2.5 Manning’s Value 34 3.3 Water Gate Operation 34 3.4 Physiographic Drainage-Inundation(PHD) Model 37 3.4.1 Algorithm Grid 37 3.4.2 Basic Equation of Quasi Two-dimensional Flow 39 3.4.2.1 Water Flow Continuity Equation 39 3.4.2.2 Flow Low 39 3.4.3 Governing Equation 43 3.4.4 Boundary Conditions 43 3.4.5 Calibration and Verification 43 3.5 Frequency Analysis 45 3.5.1 Probability Distribution 46 3.5.1.1 Hydrological Frequency Equation 46 3.5.1.2 Distribution 46 3.5.1.3 Sample Statistics and Standard Normal Values 49 3.5.2 Goodness of Fit Test 50 3.5.2.1 Hypothesis Testing 50 3.5.2.2 Type of Verification 51 3.5.3 Choose the Most Suitable Distribution 53 3.6 Design Rainfall Pattern 54 3.7 Scenario Design 55 3.7.1 Operation Scenario 56 3.7.1.1 Water Inflow Operation (Operation 1) 56 3.7.1.2 Draining Operation (Operation 2) 59 3.7.1.3 Flooding Condition after Rainfall (Operation 3) 61 3.7.2 Engineering Scenario 61 3.7.3 Simulation Assumptions and Definitions 63 Chapter 4 Results and Discussion 65 4.1 Data Collection and Survey Results 65 4.1.1 Water Depth Survey Results 65 4.1.2 Tide Level Survey Results 66 4.1.3 The elevation of study area in Taiqu Salt Pan 71 4.2 Water Gate Inflow Operation 72 4.2.1 Gate Operation in October 2020 72 4.2.2 Gate Operation in March 2021 76 4.3 Mode Setting Result 79 4.3.1 Grid Drawing 79 4.3.2 Model Verification 80 4.3.2.1 Simulation Results of Water Inflow Operation 80 4.3.2.2 Rainfall Event Simulation Results 82 4.3.2.3 Summary 84 4.4 Frequency Analysis Results 84 4.4.1 The Result of Hyetograph Design 88 4.5 Simulation Results of Each Scenario 89 4.5.1 The Results of Operation Scenario 89 4.5.1.1 Water Inflow Operation 90 4.5.1.2 Draining operation 101 4.5.1.3 Village Current Condition after Rainfall Event 113 4.5.2 Engineering Scenario Simulation Results 123 4.5.2.1 Engineering Scenario Simulation Results of Water Inflow Operation (Scenario B) 124 4.5.2.2 Engineering Scenario Simulation Results of Draining Operation (August) 126 4.5.2.3 Engineering Scenario Simulation Results of Rainfall Current Condition (Scenario D) 128 Chapter 5 Conclusion and Suggestion 133 5.1 Conclusion 133 5.1.1 Current Condition 133 5.1.2 Operation Scenario 133 5.1.3 Engineering Scenario 136 5.2 Suggestion 137 Reference 139

    1. Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American statistical association, 49(268), 765-769.
    2. Assessment, M. E. (2005). Ecosystems and human well-being (Vol. 5): Island press United States of America.
    3. Al Mamoon, A., & Rahman, A. (2017). Selection of the best fit probability distribution in rainfall frequency analysis for Qatar. Natural hazards, 86(1), 281-296.
    4. Salim, A. A. (2020). Wetland management strategies through gate operation and engineering intervention at Qigu Salt Pan Wetland. National Cheng Kung University Hydraulic and Engineering Department.
    5. Barbour, M. T., J. Gerritsen., B. D. Snyder., and J. B. Stribling. (1999). Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. (2nd edn), EPA 841-B-99-002, Washington, DC: US Environmental ProtectionAgency.
    6. Beck, M. W., K. L. Heck Jr., K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, and M. P. Weinstein. (2001). The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates. BioScience, vol. 51, issue 8, pp 833-641.
    7. Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Managemenr, 30, 492-507.
    8. Burrough, P. A., McDonnell, R., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems: Oxford university press.
    9. Barnagaud, J.-Y., Papaïx, J., Audevard, A., Lascève, M., Wroza, S., & Geoffroy, D. (2019). Interspecific variations in shorebird responses to management practices on protected Mediterranean saltpans. Biological Conservation, 237, 470-479.
    10. Chollet, J.-P., & Cunge, J. A. (1980). Simulation of unsteady flow in alluvial streams. Applied Mathematical Modelling, 4(4), 234-244.
    11. Chow, V., Maidment, D., & Mays, L. (1988). Applied hydrology McGrawdoi-Hill International editions. New York, USA.
    12. Cao, Q. V. (2004). Predicting parameters of a Weibull function for modeling diameter distribution. Forest science, 50(5), 682-685.
    13. Chen, C. N., Tsai, C. H., & Tsai, C. T. (2007). Reduction of discharge hydrograph and flood stage resulted from upstream detention ponds. Hydrological Processes: An International Journal, 21(25), 3492-3506.
    14. Chen, P.-S., Chyi, S.-J., Kuo, T.-H., Deng, P.-L., Liu, C.-L., & Ueng, Y.-T. (2020). Water Bird Communities in Nonoperational Cigu Salt Pan Wetland of Varying Land Elevation and Water Depth on the Southwest Taiwan Coast. Natural Resources, 11(01), 20.
    15. Dias, M. P., Lecoq, M., Moniz, F., & Rabaça, J. E. (2014). Can human-made saltpans represent an alternative habitat for shorebirds? Implications for a predictable loss of estuarine sediment flats. Environmental Management, 53(1), 163-171.
    16. David, A. T., Goertler, P. A., Munsch, S. H., Jones, B. R., Simenstad, C. A., Toft, J. D., Hannam, M. P. (2016). Influences of natural and anthropogenic factors and tidal restoration on terrestrial arthropod assemblages in west coast North American estuarine wetlands. Estuaries and Coasts, 39(5), 1491-1504.
    17. Farooq, M., Shafique, M., & Khattak, M. S. (2018). Flood frequency analysis of river swat using Log Pearson type 3, Generalized Extreme Value, Normal, and Gumbel Max distribution methods. Arabian Journal of Geosciences, 11(9), 216.
    18. Galib, S. M., Lucas, M. C., Chaki, N., Fahad, F. H., & Mohsin, A. (2018). Is current floodplain management a cause for concern for fish and bird conservation in Bangladesh's largest wetland? Aquatic Conservation: Marine and Freshwater Ecosystems, 28(1), 98-114.
    19. Hammock, B. G., Hartman, R., Slater, S. B., Hennessy, A., & Teh, S. J. (2019). Tidal wetlands associated with foraging success of Delta Smelt. Estuaries and Coasts, 42(3), 857-867.
    20. Kingsford, R. T., Basset, A., & Jackson, L. (2016). Wetlands: Conservation's poor cousins. Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 892–916.
    21. Kuo, P. H., & Wang, H. W. (2018). Water management to enhance ecosystem services in a coastal wetland in Taiwan. Irrigation and Drainage, 67, 130-139.
    22. Law, A. M., Kelton, W. D., & Kelton, W. D. (2000). Simulation modeling and analysis (Vol. 3): McGraw-Hill New York.
    23. Myers, W. D., & Swiatecki, W. (1967). Average nuclear properties.
    24. Ma, Z., Cai, Y., Li, B., and Chen, J. (2010). Managing wetland habitats for waterbirds: an international perspective. Wetlands, 30(1), 15-27.
    25. O’Brien, J. S. (2017). FLO-2D Reference Manual Version 2017.
    26. Pilgrim, D. H., & Cordery, I. (1975). Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, 101(1), 81-95.
    27. Ramsar Convention. 1971.
    28. Ramsar Convention. 2018.
    29. Rocha, A. R., Ramos, J. A., Paredes, T., & Masero, J. A. (2017). Coastal saltpans as foraging grounds for migrating shorebirds: an experimentally drained fish pond in Portugal. Hydrobiologia, 790(1), 141-155.
    30. Roegner, G. C., Johnson, G. E., & Coleman, A. M. (2021). Indexing habitat opportunity for juvenile anadromous fishes in tidal-fluvial wetland systems. Ecological Indicators, 124, 107422.
    31. Thoms, M. C., Southwell, M., & McGinness, H. M. (2005). Floodplain-river ecosystems: Fragmentation and water resources development. Geomorphology, 71, 126-138.
    32. Tosunoglu, F., & Gurbuz, F. (2019). Mapping spatial variability of annual rainfall under different return periods in Turkey: The application of various distribution functions and model selection techniques. Meteorological Applications, 26(4), 671-681.
    33. Vickery, J. A., Ewing, S. R., Smith, K. W., Pain, D. J., Bairlein, F., Škorpilová, J., & Gregory, R. D. (2014). The decline of A fro‐P alaearctic migrants and an assessment of potential causes. Ibis, 156(1), 1-22.
    34. Wang, H.-W., Kuo, P.-H., & Dodd, A. E. (2020). Gate operation for habitat-oriented water management at Budai Salt Pan Wetland in Taiwan. Ecological Engineering, 148, 105761.
    35. Yen, B. C., & Chow, V. T. (1980). Design hyetographs for small drainage structures. Journal of the Hydraulics Division, 106(ASCE 15452).
    36. Yong, D. L., Liu, Y., Low, B. W., Espanola, C. P., Choi, C.-Y., & Kawakami, K. (2015). Migratory songbirds in the East Asian-Australasian Flyway: a review from a conservation perspective. Bird Conservation International, 25(1), 1-37.
    37. Zhang, S-Q., Zhang, P-Y., Pan, B-H., Zou, Y., Xie, Y-H., Zhu, F., Chen, X-S. (2021). Wetland restoration in the East Dongting Lake effectively increased waterbird diversity by improving habitat quality. Global Ecology and Conservation, 10, 1016.
    38. 內政部營建署(2013)。濕地保育法。內政部營建署。
    39. 內政部國土測繪中心,2020。
    40. 中央氣象局網站,2020。
    41. 王心怡(2017)。以聯結函數建立不同重現期距之設計暴雨歷線(博士論文)。取自華藝線上圖書館系統。
    42. 王筱雯(2020)。七股鹽田濕地水文生態環境永續管理計畫。國立成功大學。
    43. 中華民國野鳥協會,2020。
    44. 台江國家公園,2020。
    45. 台南市政府水利局,2020。
    46. 李光敦(2005)。水文學。五南圖書出版股份有限公司。
    47. 李晉安(2020)。嘉義沿海低地淹水調節策略-以嘉義縣北華村為例。國立成功大學水利及海洋工程學系碩士論文。
    48. 巫孟璇(2013)。地文性淹水即時預報模式之發展與應用。國立成功大學水利及海洋工程學系博士論文。
    49. 郭品含(2015)。考量濕地生態系統服務之水環境管理-以布袋鹽田濕地為例。國立成功大學水利及海洋工程學系博士論文。
    50. 陳文山(2016)。台灣地質概論。中華民國地質學會。
    51. 陳淯婷、顏添明(2018)。柳杉人工林疏伐後7 年之林分生長、林分結構及森林健康探討。林業研究季刊,40(2),161-178。
    52. 彭佩斯(2017)。透過水管裡活化廢曬鹽灘之研究。國立成功大學水利及海洋工程學系碩士論文。
    53. 經濟部水利署(2017)。台灣地區雨量測站降雨強度-延時Horner公式參數分析。經濟部水利署。
    54. 廖彥翔(2019)。七股鹽田濕地水門操作策略之研究。國立成功大學水利及海洋工程學系碩士論文。
    55. 蔡智恆、陳金諾、蔡長泰(2010)。應用地文性土壤沖淤模式模擬多子集水區流域之產砂量。中國土木水利工程學刊。
    56. 謝惠紅、鄭士仁、劉璟燁、周世昌、蕭博仁(2006)。夏季日降雨量空間分佈特性之研究。農業工程學報,52(1),47-55。

    下載圖示 校內:2024-01-18公開
    校外:2024-01-18公開
    QR CODE