簡易檢索 / 詳目顯示

研究生: 施乃升
Shih, Nai-Sheng
論文名稱: 基於SMO演算法減少記憶體提升語者訓練效能之可重組式硬體架構設計
A Reconfigurable Hardware Design for SMO to Improve Speaker Training Efficiency and Memory Reduction
指導教授: 王駿發
Wang, Jhing-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 69
中文關鍵詞: 循序最小最佳化超大型積體電路可重組式運算語者辨識
外文關鍵詞: SMO, VLSI, reconfigurable computing, speaker recognition
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 依序最佳化(Sequential Minimal Optimization, SMO)是目前應用於語者辨識領域最常被使用的一種分類演算法,但是目前艱鉅困難的挑戰是如何縮短過長的訓練時間,本篇論文提出了可重組式硬體架構去改善依序最佳化過長的訓練時間,可重組式硬體架構是將分散式運算和管線化運算整合的一種架構,並且同時擁有分散式運算的高效率和管線化加速的能力,在語音辨識很適合運算高維度特徵。
    本篇論文最主要的貢獻在於最佳化硬體設計層級於超大型積體電路設計,將可重組式硬體架構的概念應用於超大型積體電路設計實現依序最佳化達到加速和提升硬體使用率,進而縮小面積和達到及時運算的能力,除此之外平行式網狀硬體架運算構擁有高度的彈性與效能,有效節省晶片內記憶體(internal memory)高達75%的面積和減少14%組合邏輯與序向邏輯的面積。

    Sequential Minimal Optimization (SMO) is a popular classification algorithm that is greatly applied in speaker recognition. However, the solution of resolving computational bottleneck in training phase is a difficult challenge. In this work, the reconfigurable architecture with an improved SMO algorithm is proposed for solving the problem in text-independent speaker recognition. Our contributions are attributed to the optimal VLSI design form algorithm to architecture level. At architecture level, a novel idea of distributed computing is implemented by the reconfigurable hardware component which combines parallel and pipeline architecture at the same time. The reconfigurable computing is a high flexible and high performance technology. Finally, the experimental results show that the utilization of memory can achieve 75% saving and the hardware resource can reduce 69% than before.

    Chapter1 Introduction 1 1.1 Background 1 1.2 Related Work 1 1.3 Motivation 2 1.4 Thesis Organization 3 Chapter2 Training Phase Algorithm 5 2.1 System Overview 5 2.2 Overview of SVM Algorithm 6 2.3 Overview of SMO Algorithm 8 Chapter3 Testing Phase Algorithm 14 3.1 Overview of Feature Extraction Algorithm 14 3.1.1 End-Point Detection 14 3.1.2 Pre-Emphasis 15 3.1.3 Frame Blocking 16 3.1.4 Hamming Window 16 3.1.5 LPCC 16 3.2 Overview of Speaker Recognition Algorithm 17 Chapter4 HW/SW Co-design 20 4.1 HW/SW Co-design 20 4.1.1 HW/SW Co-design 20 4.1.2 AMBA Protocol 21 4.1.3 EASY Platform 26 4.2 HW/SW Partition 27 4.3 HW/SW Co-optimization 28 4.3.1 Acceleration Implementation by Fixed-point 28 4.3.2 Fixed-point Format for Software 29 4.3.3 Floating-system VS. Fixed-system 31 Chapter5 Hardware Implementation 34 5.1 Overview of Hardware Architecture 34 5.2 Computing Engine 35 5.2.1 Process Element Design 35 5.2.2 Computing Engine Design 37 5.3 Distributed Memory 39 5.4 Feature Processing Engine 40 5.5 Optimal Condition Checking Engine 43 5.6 SMO Controller Design 44 5.6.1 Main Controller Design 44 5.6.2 STEPs Controller Design 48 5.6.2.1 STEP1 Controller Design 48 5.6.2.2 STEP2 Controller Design 50 5.6.2.3 STEP3 Controller Design 54 5.6.2.4 STEP4 Controller Design 55 5.6.2.5 STEP5 Controller Design 57 Chapter6 Experimental Results 60 6.1 Introduction to Experimental Environment 60 6.2 Introduction to CDK Embedded System 61 6.3 FPGA Implementation 62 6.4 Simulation Result 62 Chapter7 Conclusion and Future Work 65 7.1 Conclusion 65 7.2 Future Work 65 References 66

    [1] D. Reynold and R.C. Rose, “Robust Text Independent Speaker Identification Using Gaussian Mixture Speaker Models,” Proc. IEEE Tran. Speech and Audio Processing, vol. 3, Jan. 1995, pp. 72-83.
    [2] Lukáˇs Burget, Pavel Matˇejka, Petr Schwarz, Member, Ondrˇej Glembek, Student, and Jan Honza Cˇ ernocký, “Analysis of Feature Extraction and Channel Compensation in a GMM Speaker Recognition System,” IEEE transactions on speech, audio and language processing, vol. 15, no. 7, pp. 1979-1985, september 2007.
    [3] Mikyong Ji, Sungtak Kim, Hoirin Kim, Member, IEEE, Keun-Chang Kwak, and Young-Jo Cho, “Reliable Speaker Identification Using Multiple Microphones in Ubiquitous Robot Companion Environment,” 16th IEEE International Conference on Robot & Human Interactive Communication, 2007.
    [4] Qin Jin, Tanja Schultz, and Alex Waibel, “Far-Field Speaker Recognition,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 7, Sep. 2007.
    [5] Wan Vincent and Renals Steve, “Speaker verification using sequence discriminant support vector machines,” IEEE transactions on speech and audio processing, vol. 13, No. 2, march 2005.
    [6] William M. Campbell, Joseph P. Campbell, Terry P. Gleason, Douglas A. Reynolds, and Wade Shen, “Speaker Verification Using Support Vector Machines and High-Level Features,” IEEE transactions on speech , audio and language processing, vol. 15, no. 7, september 2007.
    [7] J.C. Wang, C.H.Yang, J.F. Wang, and H.P. Lee, “Robust speaker identification and verification,” IEEE Compu. Intell. Mag., pp.52-59, May 2007.
    [8] C. M. Bishop, Pattern Recognition and Machine Learning, New York, NY : Springer Science+Business Media, pp. 325-358, 2006.
    [9] Michael Feld, “Embedded Modules for Speaker Classification,” IEEE Conference on Semantic Computing, ICSC, pp.370-377, Aug. 2008.
    [10] Dong Wang, Liang Zhang, Jia Liu, and Runsheng Liu, “Embedded Speech Recognition System on 8-Bit MCU Core,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04), vol. 5, V- 301-4 vol.5 , May. 2004.
    [11] Yan Chen, Qingyang Hong, XiaoYang Chen, Caihong Zhang, “Real-Time Speaker Verification Based on GMM-UBM for PDA,” Fifth IEEE International Symposium on Embedded Computing, Publication Date: 6-8, pp.243-246, Oct. 2008.
    [12] B. Tydlitat, J.Navratil, J.W. Pelecanos, G.N. Ramaswamy, ”Text-Independent Speaker Verification in Embedded Environments,” IEEE International Conference on Acoustics, Speech amd Signal Processing, vol. 4, pp. IV-293-IV-296, April 2007.
    [13] G. Arfan, M. Martin, M. Liam and H. Jim., “ Hardware/Software Co-Design for Spike Based Recognition,” IJCNN, vol.1 pp. 12 - 17, 2007.
    [14] S.Y. Peng, B.A. Minch and P. Hasler, “Analog VLSI implementation of support vector machine learning and classification,” IEEE Int. symp. Circuits and Systems (ISCAS), pp. 860-863, May 2008.
    [15] D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support vector machines: Theory, algorithm, and FPGA implementation” IEEE Trans. on Neural Networks, vol. 14 no. 5, pp. 993-1009, Sep. 2003.
    [16] S. Dey, M. Kedia, N. Agarwal and A. Basu, "Embedded Support Vector Machine : Architectural Enhancements and Evaluation," 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07), pp.685-690, 2007
    [17] T. W. Kuan, J. F. Wang, J. C. Wang, and G. H. Gu, “VLSI Design of Sequential Minimal Optimization Algorithm for SVM Learning, ” Proc. IEEE Int. Conf. on Circuits and Systems(ISCAS), vol. 5, pp. 2509 - 2512. 2009
    [18] C. Cortes and V. Vapnik, “ Support vector networks,” Machine Learning, vol. 20, pp. 273-297, 1995.
    [19] J. C. Platt, “Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998..
    [20] .J.C.Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.” Technical Report MSR-TR-98-14, Microsoft Research, 1998.
    [21] Chin-Lung Hart SU, Jyh-Shing Roger Jang, “Speech Recognition on 32-bit Fixed-point Processors: Implementation & Discussions,” Master’s Thesis, Tsing Hua University, Hsinchu City, Taiwan. 2005.
    [22] J.F.Wang, T.W. Kuan, and T.W.Sun, “Dynamic Fixed-Point Arithmetic Design of Embedded SVM-Based Speaker Identification , ” ISNN2010
    [23] 財團法人國家實驗研究院 國家晶片系統設計中心 http://www.cic.org.tw/

    下載圖示 校內:2017-02-15公開
    校外:2017-02-15公開
    QR CODE