簡易檢索 / 詳目顯示

研究生: 游俊彥
Yu, Chun-Yen
論文名稱: 在可調式視訊解碼中複雜度預測演算法之研究
Complexity Prediction in Scalable Video Decoding
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 79
中文關鍵詞: CGS-SVC線性統計運算能力感知
外文關鍵詞: CGS-SVC, Statistic, Linear, Computation-aware
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對CGS-SVC提出一個結合統計和線性關係的混合模型來對可調視訊編碼進行解碼複雜度預測,其主要是透過一個線性關係,進而顯著地降低只單純使用統計方法預測的計算複雜度。除此之外,我們更進一步地將預測模型和影像層選擇機制結合,形成一個可以根據平台運算能力變化而進行不同複雜度解碼的運算能力感知解碼架構。由實驗結果可知,我們所提出的混合模型在各品質層和不同的影像複雜度下,都能提供一個精確而穩定的預測結果,相較於線性模型有更好預測精準度,平均預測誤差為1.51%。在預測解碼複雜度的Overhead Complexity只有2.1%,約統計模型的五分之一。我們提出的運算能力感知解碼架構,可在平台運算能力下降時,正確的選擇較低複雜度的影像層。經由和一個沒有預測機制的情況做比較,証實我們的解碼架構,在運算能力改變不斷改變的情況下,仍可保持在一個較小的PSNR變化。

    This paper presents a hybrid model which combines a statistic model with a linear relationship to predict CGS-SVC decoding complexity. This model decreases the computing complexity of the statistic model evidently by the linear method. Furthermore, we integrate our model with the layer decision mechanism to form the computation-aware decoding architecture which can adjust decoding complexity according to the computing power of the target platform. In experimental result, the prediction error is 1.51% and overhead complexity is 2.1% for our proposed. It means the model provides not only a more accurate and stable prediction than linear model but also an one-fifth of overhead complexity for the statistic model. The experiment also show our architecture chose a suitable decoding complexity correctly in a computing power descending situation and keeping a smaller variation of PSNR compares to the decoding system without our mechanism.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究動機 2 1-2 研究貢獻 3 1-3 論文架構 3 第二章 研究背景 4 2-1 可調視訊編碼 (SVC) 概述 4 2-1-1 可調式編解碼器 (SVC codec) 5 2-1-2 階層式B畫面架構 (Hierarchical B Frame) 6 2-1-3 時間可調性 (Temporal Scalability) 7 2-1-4 空間可調性 (Spatial Scalability) 8 2-1-5 訊雜比可調性 (SNR Scalability) 10 2-2 相關論文研究 11 2-2-1 以線性模型為基礎的幀內解碼複雜度預測 11 2-2-2 對影像解碼中的空間和時間補償進行複雜度預測 15 2-2-3 以統計架構為基礎的影像解碼複雜度預測 18 第三章 針對可調視訊解碼之複雜度預測及運算能力感知解碼架構 20 3-1 系統架構與流程概述 21 3-2 針對CGS-SVC之運算能力感知解碼架構 28 3-2-1 基於高斯混合模型之最高品質層複雜度預測 28 3-2-2 基於線性關係之子影像層解碼複雜度預測 32 3-2-3 基於平台運算能力之解碼影像層決定和預測修正機制 35 3-2-4 動態影像層選擇解碼器 36 第四章 系統模擬與實驗結果分析 38 4-1 不同複雜度預測模型的結果比較 38 4-1-1 其它複雜度預測模型介紹 38 4-1-2 模型訓練和預測結果比較 47 4-2 運算能力感知解碼架構之模擬結果 53 4-2-1 運算能力感知解碼架構之複雜度預測結果 53 4-2-2 在運算能力感知解碼架構之複雜度預測比較 59 4-2-3 與固定解碼複雜度架構之比較 63 4-2-4 與變動解碼複雜度架構之比較 67 第五章 結論與未來展望 74 5-1 結論 74 5-2 未來展望 75 參考文獻 76

    [1] H. Schwarz, D. Marpe, and T. Wiegand, “Hierarchical B pictures,” Joint Video Team, Poznan, Poland, Doc. JVT-P014, 2005.
    [2] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchical B pictures and MCTF,” IEEE Int. Conf. on Multimedia and Expo, pp. 1929-1932, Jul. 2006.
    [3] S. Cei and P. Cosman, “Comparison of error concealment strategies for MPEG video,” IEEE Wireless Communications and Networking Conference (WCNC), pp. 329-333, 1999.
    [4] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding Extension of the H.264/AVC Standard,” IEEE Trans. on Circuits and System for Video Technology, vol. 17, no. 9, pp. 1103-1120, Sep. 2007.
    [5] J. Hamers, L. Eeckhout, and K. De Bosschere, “Exploiting video stream similarity for energy-efficient decoding,” Advances in Multimedia Modeling, 2007.
    [6] W. H. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU scheduling for mobile multimedia systems,” Operating Systems Review, 2003.
    [7] Y. C. Huang, A. V. Tran, and Y. Wang, “A workload prediction model for decoding mpeg video and its application to workload-scalable transcoding,” ACM Int. Conf. on Multimedia Germany, 2007.
    [8] Nikolaos Kontorinis, Yiannis Andreopoulos, and Mihaela van der Schaar, “Statistical Framework for Video Decoding Complexity Modeling and Prediction,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1000-1013, July 2009.
    [9] Szu-Wei Lee and C.-C. Jay Kuo, “Complexity Modeling of Spatial and Temporal Compensations in H.264/AVC Decoding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 20, no. 5, pp. 706-720, May 2010.
    [10] Ting Tian, Hngxing Guo, and Shengsheng Yu, “Linear Modeling for MPEG-4 Intra Frame Decoding Complexity Prediction based on Statistical Analysis,” IEEE Int. Conf. on Signal Process. (ICSP), vol. 2, pp. 2484-2487, Oct. 2010.
    [11] Ville Lappalainen, Antti Hallapuro, and Timo D. Hamalainen, “Complexity of Optimized H.26L Video Decoder Implementation,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 717-725, Jul. 2003.
    [12] Szu-Wei Lee and C.-C. Jay Kuo, “Complexity Modeling for Motion Compensation in H.264/AVC Decoder,” IEEE Int. Conf. on Image Process. (ICIP), Sep. 2007.
    [13] Intel. Intel VTune Amplifier XE. [Online]. http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

    [14] Ali H. Sayed, Adaptive Filters. NewYork: A John Wiley & Sons, Inc., 2008.
    [15] Ting Tian, Hngxing Guo, and Shengsheng Yu, “Linear model-based adaptive prediction for video decoding complexity,” IEEE Int. Conf. on Multimedia and Expo. (ICME), Jul. 2011.
    [16] Nicholas Mastronarde and Mihaela van der Schaar, “A Scalable Complexity Specification for Video Applications,” IEEE Int. Conf. Image Process. (ICIP), pp. 2576-2579, Oct. 2008.
    [17] Zhihai He and Sanjit K. Mitra, “A Unified Rate-Distortion Analysis Framework for Transform Coding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 12, pp. 1221-1236, Dec. 2001.
    [18] Yiannis Andreopoulos and Mihaela van der Schaar, “Adaptive Linear Prediction for Resource Estimation fo Video Decoding,” IEEE Trans on Circuits and Systems for Video Technology, vol. 17, no. 6, pp. 751-764, Jun. 2007.
    [19] Szu-Wei Lee and C.-C. Jay Kuo, “Complexity Modeling of Spatial and Temporal Compensations in H.264/AVC Decoding,” IEEE Int. Conf. Image Process. (ICIP), pp. 2504-2507, Oct. 2008.
    [20] Yiannis Andreopoulos and Mihaela van der Schaar, “Complexity-Constrained Video Bitstream Shaping,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1967-1974, May 2007.
    [21] Szu-Wei Lee and C.-C. Jay Kuo, “Motion compensation complexity model for decoder-friendly H.264 system design,” IEEE Int. Workshop on Multimedia Signal Process. (MMSP), pp. 119-122, Oct. 2007.
    [22] Mihaela van der Schaar and Yiannis Andreopoulos, “Rate-distortion-complexity modeling for network and receiver aware adaptation,” IEEE Trans. on Multimedia, vol. 7, no. 3, pp. 471-479, Jun. 2005.
    [23] Shakeel Sultan, Fakhar Ahsan, Nadeem Khan, and Ahmed Majeed Khan, “Power Aware Decoding of a Scalable Video bit-stream,” IEEE Int. Symposium on Performance Evaluation of Computer & Telecomunication Systems (SPECTS), Jul. 2009.
    [24] Emrah Akyol and Mihaela van der Schaar, “Compression-Aware Energy Optimization for Video Decoding Systems With Passive Power,” IEEE Trans on Circuits and Systems for Video Technology, vol. 18, no. 9, pp. 1300-1306, Sep. 2008.
    [25] Brian Foo and Mihaela van der Schaar, “A Queuing Theoretic Approach to Processor Power Adaptation for Video Decoding Systems,” IEEE Trans. on Signal Process., vol. 56, no. 1, pp. 378-392, Jan. 2008.
    [26] Wanghong Yuan, Klara Nahrstedt, Sarita V. Adve, Douglas L. Jones, and Robin H. Kravets, “GRACE-1: Cross-Layer Adaptation for Multimedia Quality and Battery Energy,” IEEE Trans. on Mobile Computing, vol. 5, no. 7, pp. 799-815, Jul. 2006.
    [27] Muhammad Shafique, Bruno Zatt, Sergio Bampi, and Jorg Henkel, “Power-Aware Complexity-Scalable Multiview Video Coding for Mobile Devices,” Picture Coding Symposium (PCS), pp. 350-353, Dec. 2010.
    [28] Serdar Burak Solak and Fabrice Labeau, “Complexity Scalable Video Encoding for Power-Aware Applications,” IEEE Int. Conf. on Green Computing, pp. 443-449, Aug. 2010.
    [29] Zhan Ma and Yao Wang, “Complexity Modeling of scalable Video Decoding,” IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1125-1128, Apr. 2008.
    [30] He Li, Z. G. Li, and Changyun Wen, “Adaptive Decoder Complexity Reduction for Coarse Granular Scalability,” IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 1145-1148, Apr. 2007.

    下載圖示 校內:2015-08-31公開
    校外:2015-08-31公開
    QR CODE