簡易檢索 / 詳目顯示

研究生: 吳宗曄
Wu, Tsung-Yeh
論文名稱: 新型砷化銦鎵銻通道高速電晶體
A Novel Dilute Antimony InGaAsSb Channel High Electron Mobility Transistor
指導教授: 許渭州
Hsu, Wei-Chu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 58
中文關鍵詞: 砷化銦鎵銻砷化銦鎵電晶體高速電晶體
外文關鍵詞: InGaAsSb, Sb, transistor, InGaAs, HEMT
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們以「分子束磊晶法」成功研製了以In0.2Ga0.8As(Sb)為通道的高電子移動率電晶體,Sb常常被應用在成長 InGaAsN/GaAs 量子井時通入,可當成一種類似活化劑的作用,其優點是可以降低三向成長以及改善量子井各層薄膜之間的介面品質,可以有效的減少結構缺陷。
    實驗結果顯示,高電子移動率電晶體的結構中使用新式的InGaAs(Sb)當通道,可以有效的改善元件的通道結構。從PL的光譜強度可以明顯的看出以InGaAs(Sb)為通道的結構其共振強度比使用InGaAs為通道的結構高出1.58倍,另外,從TEM的圖也可以發現GaAs/InGaAs(Sb) HEMT的通道比較紮實,相對的GaAs/InGaAs HEMT的通道比較鬆散。由於通道結構的改善,我們得到較高的載子移動率,GaAs/InGaAs(Sb) HEMT擁有較佳的直流特性與熱穩定度,在高頻操作時也有較好的表現。
    在室溫下,閘極尺寸為1.2*200um2時,由於在通道加入Sb,其最大異質轉導值從180mS/mm增加為227mS/mm。電流驅動能力IDSS原本是170mA/mm,也因為使用InGaAs(Sb)當通道而提高至218mA/mm,元件的閘極工作電壓擺幅也從1.15V稍微增加至1.17V。而當溫度從300K變化至480K時,傳統的GaAs/In0.2Ga0.8As HEMT的臨界電壓變化率是-1.77mV/K,而GaAs/In0.2Ga0.8As(Sb) HEMT的變化率降低至-1.54 mV/K。。
    此外使用InGaAs(Sb)的通道結構在交流特性上都可以比傳統InGaAs通道表現的更佳,其截止頻率與最大震盪頻率分別可達25.6GHz與28.3GHz,均比傳統InGaAs通道結構的20.6GHz與25.6GHz高。

    This work reports, a high electron-mobility transistor (HEMT) using a dilute antimony In0.2Ga0.8As(Sb) channel, grown by the molecular beam epitaxy (MBE) system. The advantages by introducing the surfactant-like Sb atoms during growth of InGaAsN/GaAs quantum well (QW) consist of the suppression of the three-dimensional growth and the improved interfacial quality of the QW heterostructure.
    Besides, the present device exhibits better dc characteristics, highly stable thermal and frequency characteristics due to the improvement in the channel layer quality by using an In0.2Ga0.8As(Sb) channel.
    Distinguished device characteristics for GaAs/In0.2Ga0.8As(Sb) HEMT and conventional GaAs/In0.2Ga0.8As HEMT, with the gate dimensions of 1.2*200um2, include thermal threshold coefficient (Vth/T) is low to be -1.54 (-1.77) mV/K, gate-voltage swing (GVS) of 1.17 (1.15) V, peak extrinsic transconductance (gm, max) of 178 (166) mS/mm, and the current drive capability (IDSS) of 171 (157) mA/mm. The microwave characteristics for GaAs/In0.2Ga0.8As(Sb) HEMT and conventional GaAs/In0.2Ga0.8As HEMT, the unity gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are 25.6 (20.6) GHz and 28.3 (25.6) GHz, respectively.

    Abstract (Chinese) Abstract (English) Chapter 1 Introduction 1 Chapter 2 Epitaxial Growth Techniques 3 Molecular Beam Epitaxy System 2-1 System introduction 4 2-2 Source 5 2-3 Growth Rate 5 2-4 Beam Flux Monitor and Substrate Heater 5 2-5 Cryoshroud and Mass Spectrometer 5 2-6 RHEED and Phosphor Screen 6 Chapter 3 Device Growth and Fabrication 7 3-1 Material Growth 7 3-2 HEMT Layer Design 7 3-2-1 Caper layer 9 3-2-2 Schottky layer 9 3-2-3 Carrier supply layer 10 3-2-4 Spacer layer 10 3-2-5 Channel layer 10 3-2-6 Buffer layer 11 3-3 Two Dimensional Electron Gas 11 3-4 Device Fabrication Process 13 3-4-1 Sample Orienting 13 3-4-2 Mesa Isolation 14 3-4-3 Source and Drain Ohmic Contact Formation 14 3-4-4 Gate Schottky Contact 15 Chapter 4 Results and Discussions 16 4-1 PL Spectra result 16 4-2 TEM Picture 16 4-3 Hall Measurement 17 4-4 DC Characteristics 18 4-4-1 Sample A (conventional InGaAs channel) 18 4-4-2 Sample B (with Dilute Antimony InGaAsSb channel) 19 4-5 The Characteristics at Different Temperatures 20 4-6 Microwave Characteristics 22 Chapter 5 Conclusion 25 References 26 Figures

    [1] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojuncyion superlattices,” Appl. Phys. Lett. , vol. 33, p. 665, 1978.
    [2] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modelation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices vol. 42, p. 804, 1995.
    [3] F. Ali and A. Gupta, “HEMTs and HBTs; devices, fabrication, and circuits,” Artech House, Boston London, 1991.
    [4] X. Yang ”InGaAsNSbÕGaAs quantum wells for 1.55 mm lasers grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol.78, p. 26 2001.
    [5] J.S. Harris, Jr., S.R. Bank, M.A. Wistey and H.B. Yuen ”GaInNAs(Sb) long wavelength communications lasers, ”IEE Proc.-Optoelectron., vol. 151, p. 407, 2004.
    [6] Harris, J.S., Jr., ”GaInNAs long wavelength lasers: progress and challenges”, Semicond. Sci. Technol., vol. 6, p. 880, 2002.
    [7] Ha, W., Gambin, V., Bank, S., Wistey, M., Yuen, H., Kim, S., and Harris, J.S., Jr., “Long-wavelength GaInNAs(Sb) lasers on GaAs”, IEEE J. Quantum Electron., vol. 38, p.1260, 2002.
    [8] James S. Harris Jr. “The opportunities, successes andchallenges for GaInNAsSb”, J. Cryst. Growth, vol. 278, p. 3, 2005.
    [9] Li, L.H., Sallet, V., Patriarche, G., Largeau, L., Bouchoule, S., Merghem, K., Travers, L., and Harmand, J.C. “1.5 mm laser on GaAs with GaInNAsSb quinary quantum well”, Electron. Lett., vol. 39, p. 519, 2003.
    [10] Harmand, J.C., Ungaro, G., Largeau, L., and LeRoux, G. “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN”, Appl. Phys. Lett., vol. 77, p. 2482, 2000.
    [11] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
    [12] C.Y. Chang, Francis Kai, “GaAs High-Speed Devices”, John Wiely and Sons, New York, 1994.
    [13] B. Vinter, “Subband and Charge Control in a Two-Dimensional Electron Gas Field-Effect Transistor,” Appl. Phys. Lett., vol. 44, p. 307, 1984.
    [14] Karmalkar, G. Ramesh, “A Simple Yet Comprehensive Unified Physical Model of the 2D Electron Gas in Delta-Doped and Uniformly Doped High Electron Mobility Transistors,” IEEE Trans. Electron Devices, vol. 47, p.11, 2000.
    [15] Y. Ando, T. Itoh, “Accurate Modeling for Parasitic Source Resistance in Two-Dimensional Electron Gas Field-Effect Transistors,” IEEE Trans. Electron Devices, vol. 36, p. 1036, 1989.
    [16] M. Feng, D.R. Scherrer, P.J. Apostolakis, and J.W. Kruse, “Temperature Dependent Study of the Microwave Performance of 0.25um Gate GaAs MESFETs and GaAs Pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol. 43, p. 852, 1996.
    [17] R.E. Anholt, and S. E. Swirhum, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuits”, IEEE Trans. Electron Devices, vol. 39, p. 2029, 1992.
    [18] Bank, S.R., Ha, W., Gambin, V., Wistey, M.A., Yuen, H.B., Goddard, L.L., Kim, S.M., and Harris, J.S., Jr. “1.5mm GaInNAs(Sb) lasers grown on GaAs by MBE.” J. Cryst. Growth, vol. 251, p. 367, 2003.
    [19] Hasse, A., Volz, K., Schaper, A.K., Koch, J., Ho¨hnsdorf, F., and Stolz, W., “TEM investigations of (GaIn)(NAs)=GaAs multi-quantum wells grown by MOVPE”, Cryst. Res. Technol., vol. 35, p. 787, 2000.
    [20] A. Belache, A. Vanoverschelde, G. Salmer, and M. Wolny, “Experimental analysis of HEMT behavior under low-temperature conditions”, IEEE Trans. Electron Devices, vol. 38, p. 3, 1991.
    [21] M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25 μm gate GaAs MESFETs and GaAs pseudomorphic HEMTs,” IEEE Trans. Electron Devices vol. 43, p. 852, 1996.
    [22] J. C. Liou, and K. M. Lau, “Temperature dependence and persistent conductivity of GaAs MESFET’s with superlattice Buffers,” IEEE Trans. Electron Devices vol. 35, p. 14, 1988.
    [23] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices vol. 40, p. 1630, 1993.
    [24] P.G. Young, S.A. Alterovitz, R.A. Mena, E.D. Smith, “RF Properties of Epitaxial Lift-Off HEMT Devices” IEEE Transactions on Electron Devices, vol. 40, p. 1905, 1993.
    [25] K. Kiziloglu, H. Ming, D. S. Harvey, R. D. Widman, C. E. Hooper, P. B. Janke, J. J. Brown, L. D. Nguyen, D. P. Docter, S. R. Burkhart, “High-performance AlGaAs/InGaAs/GaAs PHEMTs for K and Ka-band applications,” Microwave Symposium Digest, IEEE MTT-S International, vol. 2, p. 13, 1999.
    [26] M. Miyashita, N. Yoshida, Y. Kojima, T. Kitano, N. Higashisaka, J. Nakagawa, T. Takagi, M. Otsubo, “An AlGaAs/InGaAs pseudomorphic HEMT modulator driver IC with low power dissipation for 10-Gb/s optical transmission systems”, Microwave Theory and Techniques, vol. 45, p. 1058 ,1997.
    [27] P. Cova, R. Menozzi, D. Lacey, Y. Baeyens, F. Fantini, “High performance electron devices for microwave and optoelectronic applications,” EDMO., IEEE 1995 Workshop, 1995.
    [28] R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMTs,” IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997.

    下載圖示 校內:2008-07-17公開
    校外:2011-07-17公開
    QR CODE