簡易檢索 / 詳目顯示

研究生: 李承遠
Li, Cheng-Yuan
論文名稱: 應用於寬範圍輸入之兩級式轉換器
Two-stage Converter for Wide Input Voltage Range Applications
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 68
中文關鍵詞: 直流轉換器寬範圍輸入電壓兩級轉換器雙開關降壓/升壓轉換器雙開關返馳式轉換器三模式控制方案
外文關鍵詞: DC-DC converters, wide input voltage range, two-stage, two-switch buck-boost converter, two-switch flyback converter, three-mode control scheme
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵路電池供電系統種類繁多,故其電力來源電壓範圍極大,寬輸入範圍直流轉換器因可滿足不同設施的備貨需求,因此廣泛地應用在鐵路運輸工業中。本論文研製具十倍輸入電壓範圍的兩級式轉換器。第一級轉換器為擁有三模式控制方案的雙開關降壓/升壓轉換器,分別在不同的輸入電壓條件下,使用降壓、升壓和降/升壓模式將寬範圍輸入調整至固定的電壓;第二級轉換器為雙開關返馳式轉換器,為系統提供電氣隔離,並具漏感能量回收機制可有效提升系統效率。本論文首先分析上述兩種轉換器之動作原理,並進行系統參數設計及討論三模式控制方案之設計準則。最後,實作一輸入電壓範圍在16~160 VDC、輸出為5 V/30 A之實驗雛形,以驗證三模式控制方案,實驗結果顯示其於輸入電壓40 V輸入並操作於升壓控制模式時可達最高效率87.5 %。

    Railway applications are powered from various railway storage battery system with the wide voltage range. So, the wide input range DC-DC converters are always be adopted in transportation industry applications to reduce inventory requirements. In this thesis, a two-stage converter with a 10:1 input voltage range is implemented. The first-stage is buck/boost converter with a three-mode control scheme. It regulates the wide-range input into fixed voltage via three different modes—buck, boost and buck-boost—based on different input conditions. The second-stage is two-switch flyback converter providing isolation and recycling leakage inductance energy. The operating principles of both converters are analyzed, the system parameters are designed, and the control scheme is discussed in detail. Finally, a two-stage converter is implemented and the three-mode control scheme is verified. The specifications of the input and output voltage range are 16 VDC to 160 VDC and 5 V/30 A, respectively. As the experimental results show, the highest efficiency is 87.5% when the input voltage is 40 V and the converter is operated in boost mode.

    Chapter 1 Introduction ......... 1 1.1 Background and Motivation ......... 1 1.2 Thesis Organization ......... 4 Chapter 2 Introduction of Converters and Control Schemes for Wide Input Voltage Range Applications ......... 5 2.1 Introduction of Non-isolated DC-DC Converters ......... 5 2.2 Introduction of Isolated Converters ......... 9 2.3 Introduction of Integrated Two-stage Converter for Wide Range Applications ......... 14 Chapter 3 Analysis of Two-stage Converter ......... 15 3.1 Operating Principles and Steady-state Analysis of TSBB Converter ......... 15 3.2 Operating Principles and Steady-state Analysis of Two-switch Flyback Converter ......... 32 3.3 Proposed Three-mode Control Scheme for Wide Input Voltage Range Applications ......... 42 Chapter 4 Hardware Implementation and Experimental Results ......... 45 4.1 System Specifications and Key Parameter Design ......... 45 4.2 Experimental Results and Discussions ......... 53 Chapter 5 Conclusions and Future Works ......... 64 5.1 Conclusions ......... 64 5.2 Future Works ......... 65 References ......... 66

    [1]“Railway certified power solution guide,” MINMAX, 2018. [Online].Available: http://www.dicel.fr/Doc/Railway%20minmax.pdf
    [2]“Mornsun DC/DC railway power application guide,” MORNSUN. [Online]. Available: https://www.mornsunpower.de/uploads/pdf/MORNSUN%20DCDC%20Railway%20Converter%20Application%20Guide%202018%20(final%20version).pdf
    [3]“A two-stage approach to highly efficient, super-wide input voltage range DC-DC converters,” SynQor, 2009. [Online]. Available: https://www.synqor.com/document-download?document=wp_SuperWide-WhitePaper.pdf
    [4]E. Schaltz, P. O. Rasmussen, and A. Khaligh, “Non-inverting buck-boost converter for fuel cell applications,” IECON, pp. 855-860, 2008.
    [5]H. Qiao, Y. Zhang, Y. Yao, and L. Wei, “Analysis of buck-boost converters for fuel cell electric vehicles,” IEEE ICVES, pp.109-113, 2006.
    [6]C. Restrepo, J. Calvente, A. Cid-Pastor, A. E. Aroudi, and R. Giral, “A noninverting buck–boost DC–DC switching converter with high efficiency and wide bandwidth,” IEEE Trans. on Power Electron., vol. 26, no. 9, pp. 2490-2503, 2011.
    [7]C. Yao, X. Ruan, X. Wang, and C. K. Tse, “Isolated buck–boost DC/DC Converters suitable for wide input-voltage range,” IEEE Trans. on Power Electron., vol. 26, no. 9, pp. 2599-2613, 2011.
    [8]L. Tai, M. Lin, J. Wang, K. Liu, and T. Gao, “Analysis and design of a wide input range DC-DC converter for high-speed generator energy storage systems,” IEEE IECON, pp. 3126-3131, 2015.
    [9]C. L. Wei, C. H. Chen, K. C. Wu, and I. T. Ko, “Design of an average-current-mode noninverting buck–boost DC–DC converter with reduced switching and conduction losses,” IEEE Trans. on Power Electron., vol. 27, no. 12, pp.4934-4943, 2012.
    [10]C. Yao, X. Ruan, W. Cao, and P. Chen, “A two-mode control scheme with input voltage feed-forward for the two-switch buck-boost DC–DC converter,” IEEE Trans. on Power Electron., vol. 29, no. 4, pp. 2037-2048, 2014.
    [11]X. Ren, X. Ruan, H. Qian, M. Li, and Q. Chen, “Three-mode dual-frequency two-edge modulation scheme for four-switch buck–boost Cconverter,” IEEE Trans. on Power Electron., vol. 24, no. 2, pp. 499-509, 2009.
    [12]Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter,” IEEE Trans. on Power Electron., vol. 24, no. 4, pp. 1002-1015, 2009.
    [13]Y. J. Lee, A. Khaligh, A. Chakraborty, and Ali Emadi, “Digital combination of buck and boost converters to control a positive buck–boost converter and improve the output transients,” IEEE Trans. on Power Electron., vol. 24, no. 5, pp. 1267-1279, 2009.
    [14]A. A. Ahmad and A. Abrishamifar, “A simple current mode controller for two switches buck-boost converter for fuel cells,” IEEE EPEC, pp.363-366, 2007.
    [15]L. Callegaro, M. Ciobotaru, D. J. Pagano, E. Turano, and J. E. Fletcher “A simple smooth transition technique for the noninverting buck–boost converter,” IEEE Trans. on Power Electron., vol. 33, no. 6, pp. 4906-4915, 2018.
    [16]“SLVA535B basic calculations of a 4 switch buck-boost power stage,” Texas Instruments, 2018. [Online].
    Available: http://www.ti.com/lit/an/slva535b/slva535b.pdf
    [17]P. Wen, C. Hu, H. Yang, L. Zhang, C. Deng, Y. Li, and D. Xu, “A Two Stage DC-DC Converter with Wide Input Range for EV,” in Proc. IEEE IPEMC, 2014.
    [18]D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in discontinuous-conduction mode,” International Journal of Circuit Theory and Applications, vol. 39, no.8, pp.849-864, 2011.
    [19]D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in continuous-conduction mode,” International Journal of Circuit Theory and Applications, vol. 39, no.11, pp.1145-1160, 2011.
    [20]C. Wang, Z. Wang, and N. Zhang, “Design of two-switch flyback converter with CLC output filter,” IEEE PEMC, pp. 358-361, 2009.
    [21]J. Zhao and F. Dai, “Soft-switching two-switch flyback converter with wide range,” IEEE ICIEA, pp. 250-254, 2008.
    [22]D. Murthy-Bellur and M. K. Kazimierczuk, “Active-clamp ZVS two-switch flyback converter,” IEEE ISCAS, pp. 241-244, 2011.
    [23]D. Murthy-Bellur and M.K. Kazimierczuk, “Zero-current-transition two-switch flyback pulse-width modulated DC-DC converter,” IET Power Electron., vol. 4, no. 3, pp. 288-295, 2011.
    [24]K. Soltanzadeh, H. Khalilian, and M. Dehghani, “Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter,” IET Circuits, Devices & Systems, vol. 10, no. 1, pp. 20-28, 2016.
    [25]“SLVA716 Improving the performance of traditional flyback-topology with two-switch –approach,” Texas Instruments, 2014. [Online]. Available: http://www.ti.com/lit/an/snva716/snva716.pdf
    [26]H. Wu and Y. Xing, “Families of forward converters suitable for wide input voltage range applications,” IEEE Trans. on Power Electron., vol. 29, no.11, pp. 6006-6017, 2014
    [27]P. Jang and B. H. Cho, “Two-switch forward converter with reset winding and an auxiliary active-clamp circuit for a wide input voltage range,” IEEE Trans. on Power Electron., vol. 32, no.6, pp. 4491-4502, 2017.
    [28]C. E. Kim, J. I. Baek, and J. B. Lee, “High-efficiency single-stage LLC resonant converter for wide-input-voltage range,” IEEE Trans. on Power Electron., vol. 33, no. 9, pp. 7832-7840, 2018.
    [29]B. C. Kim, K. B. Park, and G. W. Moon, “Asymmetric PWM control scheme during hold-up time for LLC resonant converter,” IEEE Trans. on Ind. Electron. , vol. 59, no.7, pp. 2992-2997, 2012
    [30]X. Sun, X. Li, Y. Shen, B. Wang, and X. Guo, “Dual-bridge LLC resonant converter with fixed-frequency PWM control for wide input applications,” IEEE Trans. on Power Electron., vol. 32, no.1, pp. 69-80, 2017
    [31]C. Shang, L. Liu, M. Liu, and S. Men “A highly-efficient two-stage DC-DC converter with wide input voltage,” INTELEC, pp. 1-6, 2015.
    [32]X. Sun, Y. Shen, Y. Zhu, and X. Guo, “Interleaved boost-integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications,” IEEE Trans. on Power Electron., vol. 30, no.8, pp. 4312-4326, 2015.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE