簡易檢索 / 詳目顯示

研究生: 賓維凡
Bin, Wei-Van
論文名稱: 模糊PID控制器應用於LCC-S補償架構串級Buck-Boost電源轉換器之定電壓輸出電路設計
A Constant Voltage Output Circuit Design Based on Fuzzy PID Controller for The LCC-S Compensation Network Cascade with Buck-Boost Converter
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 無線傳能LCC-S補償架構升-降壓電源轉換器模糊PID定電壓輸出
外文關鍵詞: wireless power transfer (WPT), LCC-S compensation topology, Buck-Boost Converter, Fuzzy PID Control, constant voltage output
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在提出ㄧ模糊PID控制器應用於LCC-S補償架構串級Buck-Boost電源轉換器之定電壓輸出電路設計,藉由LCC-S補償架構之二次側串級升-降壓電源轉換器達到升壓與降壓兩種應用之輸出目標,並透過模糊PID控制器使系統變載時自調變PID參數讓系統穩定輸出目標電壓。此研究之動機為觀察升-降壓電源轉換器對於LCC-S補償架構之輸出電壓所造成之影響,藉由升-降壓電源轉換器操作於連續電流及不連續電流模式之等效組抗,分析LCC-S補償架構之定電壓輸出特性受其影響之程度,並繪製特性曲線圖進行說明,另將模糊PID應用於本文之負回授控制取代傳統PID之方式增加系統輸出之穩定性能。本文首先對無線傳能系統、DC-DC電源轉換器及傳統控制方法進行回顧,之後根據選擇之LCC-S補償架構及升-降壓電源轉換器進行特性分析與理論公式推導,接續之章節則根據已推導之理論及控制演算法進行設計,最後利用電腦軟體模擬電路之趨勢並實際建置整體系統進行開迴路及閉迴路變載測試,驗證本文提出之方法具有可行性。

    In this thesis, we develop a wireless power transfer (WPT) system with constant output voltage using LCC-S compensation topology. By connecting with buck-boost converter, the output of system has two different applications: increasing the voltage and reducing the voltage. In addition, there is a traditional method of using fuzzy PID controller to replace PID controller in the part of the control system. The purpose of this study is to investigate the effect of continuous current mode (CCM) and discontinuous current mode (DCM) of buck-boost converter on LCC-S compensation topology. In addition to studying the output characteristics of the circuit part, whether the control performance of fuzzy PID controller is better than that of PID controller is also the focus of this article. At the beginning of this article, this paper will introduce the related reference articles of LCC-S compensation topology, DC-DC converter, and traditional control methods. Next, we will introduce the circuit characteristics of LCC-S compensation topology and buck-boost converter in detail and the derivation process of the formula. The next work is to use the formula derived in the previous chapter to design the circuit, and the control algorithm also needs to be carefully designed. At the end of this article, we will conduct experiments on the actual built system to prove that the ideas and design processes proposed in this topic are correct. The experimental results show that when the voltage is increased, the control performance of fuzzy PID controller is better than that of PID controller. However, in the case of reducing the voltage, the control performance of fuzzy PID controller is only slightly better than that of PID controller.

    目錄 摘 要 I Extended Abstract II 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XIX 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 1-4 論文架構 4 第二章 無線電能傳輸系統分析 5 2-1 前言 5 2-2 感應線圈電路模型 6 2-2-1變壓器之耦合電路模型 6 2-2-2 變壓器Y型等效模型 7 2-2-3 具理想變壓器之漏感等效模型 7 2-3 諧振補償電路分析 9 2-3-1諧振補償架構 9 2-3-2 LCC-S補償架構電路分析 10 2-3-3 LCC-S補償架構諧振特性分析 14 2-4 換流器之分析與原理 17 2-4-1 全橋換流器之原理 17 2-4-2 全橋換流器之時序運作 19 2-5 整流濾波電路分析 23 2-6升-降壓電源轉換器分析 24 2-6-1脈波調變控制方法介紹 25 2-6-2升-降壓電源轉換器之電路拓撲 25 2-6-3升-降壓電源轉換器之CCM運作模式穩態分析 26 2-6-4升-降壓電源轉換器之CCM/DCM邊界條件分析 30 2-6-5升-降壓電源轉換器之DCM運作模式穩態分析 32 2-7 PID控制理論 34 2-8模糊控制理論 36 第三章 系統軟硬體設計與規劃 39 3-1 前言 39 3-2 全橋換流器與開關驅動電路之設計與實現 40 3-2-1 微控制器介紹 40 3-2-2全橋換流器之開關驅動電路及元件參數設計 40 3-3 升-降壓電源轉換器之閘級隔離驅動電路 42 3-4 LCC-S補償拓撲及升-降壓電源轉換器元件之參數設計 44 3-4-1 LCC-S諧振補償拓撲之參數設計 45 3-4-2升-降壓電源轉換器之參數設計 46 3-5 整流濾波電路設計 49 3-6 輸出變動負載電路 49 3-7回授控制系統之設計 51 3-7-1模糊推論PID設計 52 3-7-2負載電壓量測電路 58 3-7-3中值平均濾波器 59 第四章 系統電路模擬與實驗結果 60 4-1 前言 60 4-2 PSIM電路模擬 60 4-2-1全橋換流器之驅動訊號模擬 62 4-2-2 LCC-S補償拓撲之開迴路等效負載模擬 62 4-2-3 LCC-S補償架構串級Buck-Boost電源轉換器之開迴路模擬 64 4-3 感應線圈及整體系統之實作配置 66 4-4 開迴路系統實測結果 69 4-4-1 LCC-S補償拓撲之輸入電壓與電流 70 4-4-2 升壓應用之開迴路波型量測 71 4-4-3 降壓應用之開迴路波型量測 75 4-5 閉迴路系統實測結果 79 4-5-1不同負載之定電壓輸出 79 4-5-2變載切換穩定性之評比 82 4-6 實驗結果討論 85 第五章 結論與未來研究方向 86 5-1 結論 86 5-2 未來研究方向與展望 87 參考文獻 89   圖目錄 圖2-1 無線電能傳輸系統示意圖 5 圖2-2 變壓器之等效電路模型 6 圖2-3 變壓器Y型等效模型 7 圖2-4 感應線圈之漏感等效模型 8 圖2-5 分岔現象示意圖 9 圖2-6 諧振補償之四種基本拓撲 10 圖2-7 LCC-S補償架構電路 11 圖2-8 LCC-S互感電壓模型 12 圖2-9 LCC-S之一次側等效電路圖 13 圖2-10 LCC-S補償架構之輸入組抗曲線圖 15 圖2-11 LCC-S補償架構之輸入組抗相位曲線圖 15 圖2-12 LCC-S補償架構之輸入電流曲線圖 16 圖2-13 LCC-S補償架構之電壓增益曲線圖 17 圖2-14 全橋換流器電路架構圖 18 圖2-15 全橋換流器之開關訊號與輸出波型圖 18 圖2-16 全橋換流器串聯諧振電路架構圖 19 圖2-17 全橋換流器運作模式 22 圖2-18 全橋換流器運作模式之波型示意圖 23 圖2-19 全橋整流濾波電路 24 圖2-20 脈波調變控制波型示意圖 25 圖2-21 升-降壓電源轉換器架構圖 26 圖2-22 升-降壓電源轉換器於CCM之操作狀態 27 圖2-23 升-降壓電源轉換器於CCM各元件波型示意圖 28 圖2-24 升-降壓電源轉換器之等效阻抗推導示意圖 29 圖2-25 升-降壓電源轉換器於CCM之輸出電壓漣波示意圖 30 圖2-26 升-降壓電源轉換器於CCM/DCM邊界之電感電流及電壓波型示意圖 31 圖2-27 升-降壓電源轉換器於CCM/DCM邊界之電流迴路示意圖 32 圖2-28 升-降壓電源轉換器於DCM之操作狀態 33 圖2-29 升-降壓電源轉換器於DCM各元件波型示意圖 33 圖2-30 PID控制器架構圖 35 圖2-31 Mamdani模糊控制架構圖 36 圖2-32三角形隸屬函數示意圖 37 圖3-1 完整系統架構示意圖 39 圖3-2 開關驅動系統示意圖 40 圖3-3 全橋換流器與其驅動電路架構圖 41 圖3-4 閘級隔離驅動電路示意圖 43 圖3-5 主電路架構示意圖 44 圖3-6 主電路參數設計流程圖 44 圖3-7 COMSOL分析感應線圈自感值之結果 45 圖3-8 整流濾波電路示意圖 49 圖3-9 變動負載電路示意圖 50 圖3-10 回授控制系統架構圖 51 圖3-11 微控制器之控制流程 52 圖3-12 模糊PID控制系統架構圖 53 圖3-13 模糊推論架構 53 圖3-14 模糊隸屬函數分布 54 圖3-15 負載電壓量測電路 59 圖4-1 PSIM電路模擬架構 61 圖4-2 全橋換流器之開關訊號模擬波型圖 62 圖4-3 LCC-S補償拓撲之電路模型 63 圖4-4 等效負載變動對於LCC-S補償拓撲輸出電壓之影響 63 圖4-5 升壓時升-降壓電源轉換器功率電晶體開關及及輸出電壓模擬波型圖 65 圖4-6 降壓時升-降壓電源轉換器功率電晶體開關及及輸出電壓模擬波型圖 66 圖4-7 系統架構實體圖 69 圖4-8 系統訊號量測示意圖 70 圖4-9 LCC-S補償拓撲之輸入波型 71 圖4-10 升壓應用之開迴路波型量測 72 圖4-11 升壓應用之開迴路輸出電壓量測 75 圖4-12 降壓應用之開迴路波型量測 76 圖4-13 降壓應用之開迴路波型量測 77 圖4-14 降壓應用之開迴路輸出電壓量測 78 圖4-15 升壓應用之PID回授控制不同負載之輸出電壓 80 圖4-16 升壓應用之模糊PID回授控制不同負載之輸出電壓 80 圖4-17 降壓應用之PID回授控制不同負載之輸出電壓 81 圖4-18 降壓應用之模糊PID回授控制不同負載之輸出電壓 82 圖4-19 升壓應用之PID回授控制變載波型圖 83 圖4-20 升壓應用之模糊PID回授控制變載波型圖 83 圖4-21 降壓應用之PID回授控制變載波型圖 84 圖4-22 降壓應用之模糊PID回授控制變載波型圖 84   表目錄 表3-1 全橋換流器與驅動電路元件參數表 42 表3-2閘級隔離驅動電路元件參數表 43 表3-3整體系統規格 45 表3-4 LCC-S補償拓撲之基本規格表 46 表3-5 LCC-S補償拓撲元件之理論參數表 46 表3-6 升-降壓電源轉換器基本規格表 47 表3-7 升壓時升-降壓電源轉換器基本規格表 47 表3-8 降壓時升-降壓電源轉換器基本規格表 48 表3-9 不同應用情形下之臨界電感值及臨界電容值 48 表3-10 升-降壓電源轉換器元件之理論參數表 48 表3-11 升-降壓電源轉換器於升壓時之等效電阻理論值 50 表3-12 升-降壓電源轉換器於降壓時之等效電阻理論值 50 表3-13 K_p 模糊規則表 55 表3-14 K_i 模糊規則表 56 表3-15 K_d 模糊規則表 57 表4-1電路模型模擬分析之理論元件參數及規格表 61 表4-2系統感應線圈規格表 67 表4-3升壓模式開迴路之規格表 71 表4-4升壓模式開迴路之輸出電壓量測結果 73 表4-5降壓模式開迴路之規格表 75 表4-6降壓模式開迴路之輸出電壓量測結果 77

    [1] S. Li, Z. Liu, H. Zhao, L. Zhu, C. Shuai and Z. Chen, "Wireless Power Transfer by Electric Field Resonance and Its Application in Dynamic Charging," in IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6602-6612, Oct. 2016, doi: 10.1109/TIE.2016.2577625.
    [2] C. Liu, A. P. Hu, G. A. Covic and N. C. Nair, "Comparative Study of CCPT Systems With Two Different Inductor Tuning Positions," in IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 294-306, Jan. 2012, doi: 10.1109/TPEL.2011.2158322.
    [3] X. Li, B. Duan and L. Song, "Design of Clustered Planar Arrays for Microwave Wireless Power Transmission," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 1, pp. 606-611, Jan. 2019, doi: 10.1109/TAP.2018.2876192.
    [4] P. Lu, X. -S. Yang, J. -L. Li and B. -Z. Wang, "Polarization Reconfigurable Broadband Rectenna With Tunable Matching Network for Microwave Power Transmission," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1136-1141, March 2016, doi: 10.1109/TAP.2016.2518198.
    [5] I. I. Nam, R. A. Dougal and E. Santi, "Novel Unity-Gain Frequency Tracking Control of Series–Series Resonant Converter to Improve Efficiency and Receiver Positioning Flexibility in Wireless Charging of Portable Electronics," in IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 385-397, Jan.-Feb. 2015, doi: 10.1109/TIA.2014.2330056.
    [6] X. Shu, W. Xiao and B. Zhang, "Wireless Power Supply for Small Household Appliances Using Energy Model," in IEEE Access, vol. 6, pp. 69592-69602, 2018, doi: 10.1109/ACCESS.2018.2880746.
    [7] K. Song et al., "Design of DD Coil With High Misalignment Tolerance and Low EMF Emissions for Wireless Electric Vehicle Charging Systems," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9034-9045, Sept. 2020, doi: 10.1109/TPEL.2020.2971967.
    [8] J. H. Kim et al., "Development of 1-MW Inductive Power Transfer System for a High-Speed Train," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6242-6250, Oct. 2015, doi: 10.1109/TIE.2015.2417122.
    [9] Z. Miao, D. Liu and C. Gong, "Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks," in IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 5, pp. 1160-1170, Oct. 2017, doi: 10.1109/TBCAS.2017.2740266.
    [10] W. Zhang, S. -C. Wong, C. K. Tse and Q. Chen, "Design for Efficiency Optimization and Voltage Controllability of Series–Series Compensated Inductive Power Transfer Systems," in IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 191-200, Jan. 2014, doi: 10.1109/TPEL.2013.2249112.
    [11] W. Zhang, S. -C. Wong, C. K. Tse and Q. Chen, "Load-Independent Duality of Current and Voltage Outputs of a Series- or Parallel-Compensated Inductive Power Transfer Converter With Optimized Efficiency," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 137-146, March 2015, doi: 10.1109/JESTPE.2014.2348558.
    [12] W. Zhang, S. Wong, C. K. Tse and Q. Chen, "Analysis and Comparison of Secondary Series- and Parallel-Compensated Inductive Power Transfer Systems Operating for Optimal Efficiency and Load-Independent Voltage-Transfer Ratio," in IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2979-2990, June 2014, doi: 10.1109/TPEL.2013.2273364.
    [13] S. Samanta and A. K. Rathore, "Analysis and Design of Load-Independent ZPA Operation for P/S, PS/S, P/SP, and PS/SP Tank Networks in IPT Applications," in IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6476-6482, Aug. 2018, doi: 10.1109/TPEL.2018.2794623.
    [14] Chen, Y.; Zhang, H.; Park, S.-J.; Kim, D.-H. A Comparative Study of S-S and LCCL-S Compensation Topologies in Inductive Power Transfer Systems for Electric Vehicles. Energies 2019, 12, 1913. https://doi.org/10.3390/en12101913.
    [15] Y. Chen, H. Zhang, S. -J. Park and D. -H. Kim, "A Switching Hybrid LCC-S Compensation Topology for Constant Current/Voltage EV Wireless Charging," in IEEE Access, vol. 7, pp. 133924-133935, 2019, doi: 10.1109/ACCESS.2019.2941652.
    [16] Y. Gu, J. Wang, Z. Liang and Z. Zhang, "Mutual-Inductance-Dynamic-Predicted Constant Current Control of LCC-P Compensation Network for Drone Wireless In-Flight Charging," in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2022.3142427.
    [17] S. Li, W. Li, J. Deng, T. D. Nguyen, and C. C. Mi, "A double-sided LCC compensation network and its tuning method for wireless power transfer," IEEE transactions on Vehicular Technology, vol. 64, no. 6, pp. 2261-2273, 2014.
    [18] M. Kato, T. Imura and Y. Hori, "Study on maximize efficiency by secondary side control using DC-DC converter in wireless power transfer via magnetic resonant coupling," 2013 World Electric Vehicle Symposium and Exhibition (EVS27), 2013, pp. 1-5, doi: 10.1109/EVS.2013.6915001.
    [19] M. Fu, C. Ma and X. Zhu, "A Cascaded Boost–Buck Converter for High-Efficiency Wireless Power Transfer Systems," in IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1972-1980, Aug. 2014, doi: 10.1109/TII.2013.2291682.
    [20] J. -S. Hu et al., "Hybrid Energy Storage System of an Electric Scooter Based on Wireless Power Transfer," in IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4169-4178, Sept. 2018, doi: 10.1109/TII.2018.2806917.
    [21] M. McDonough, "Integration of Inductively Coupled Power Transfer and Hybrid Energy Storage System: A Multiport Power Electronics Interface for Battery-Powered Electric Vehicles," in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6423-6433, Nov. 2015, doi: 10.1109/TPEL.2015.2422300.
    [22] M. Tajjudin, M. H. F. Rahiman, N. Ishak, R. Adnan, and H. Ismail, "Comparison between optimally-tuned PID with self-tuning PID for steam temperature regulation," in 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), 2012, vol. 2: IEEE, pp. 551-556.
    [23] R. S. M. Sadigh, "Optimizing PID Controller Coefficients Using Fractional Order Based on Intelligent Optimization Algorithms for Quadcopter," in 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), 2018: IEEE, pp. 146-151.
    [24] Baogang Hu, G. K. I. Mann and R. G. Gosine, "New methodology for analytical and optimal design of fuzzy PID controllers," in IEEE Transactions on Fuzzy Systems, vol. 7, no. 5, pp. 521-539, Oct. 1999, doi: 10.1109/91.797977.
    [25] L. Li and D. Jia, "Research on air conditioning system of subway station based on fuzzy PID control," in 2017 4th International Conference on Information Science and Control Engineering (ICISCE), 2017: IEEE, pp. 1131-1134.
    [26] L. Guo, J. Y. Hung and R. M. Nelms, "Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters," in IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2237-2248, June 2009, doi: 10.1109/TIE.2009.2016955.
    [27] C. Liu, C. Jiang, J. Song and K. T. Chau, "An Effective Sandwiched Wireless Power Transfer System for Charging Implantable Cardiac Pacemaker," in IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4108-4117, May 2019, doi: 10.1109/TIE.2018.2840522.
    [28] 劉子溢, "電動車寬頻帶與高效率無線電能傳輸系統研製," 成功大學電機工程學系學位論文, pp. 1-92, 2015。
    [29] V. Shevchenko, O. Husev, R. Strzelecki, B. Pakhaliuk, N. Poliakov and N. Strzelecka, "Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application," in IEEE Access, vol. 7, pp. 120559-120580, 2019, doi: 10.1109/ACCESS.2019.2937891.
    [30] 陳正一, "具有彈性供電能力之無線電能共享平台於共享電動載具之設計與應用," 成功大學電機工程學系學位論文, pp. 1-77, 2020。
    [31] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, 1965.
    [32] M. Mizumoto, "Product-sum-gravity method=fuzzy singleton-type reasoning method=simplified fuzzy reasoning method," Proceedings of IEEE 5th International Fuzzy Systems, 1996, pp. 2098-2102 vol.3, doi: 10.1109/FUZZY.1996.552786.
    [33] STMicroelectronics, "UM1670 User manual(discovery-kit-with-stm32f429zi-mcu)," September 2017.
    [34] STMicroelectronics, "STM32F427xx STM32F429xx Datasheet," January 2018.
    [35] R. Semiconductor, "SCT2080KE Datasheet," 2019.
    [36] Agilent Technologies, "A3120 Datasheet," 2005.
    [37] Texas Instruments, "Common Mistake in DC/DC Converters and How to Fix Them," pp. 1-19, 2018.
    [38] Texas Instruments, "Under the hood of a noninverting buck-boost converter," pp. 1-25, 2016.
    [39] STMicroelectronics, "STPS40H100CW Datasheet," 2018.
    [40] Infineon, "IR2110-DataSheet-v01_00," 2019.
    [41] M. Bouaraki, F. Z. Dekhandji and A. Recioui, "Design and Simulation of Low Distortion Current Mode Control Power Factor Correction Converter," 2020 International Conference on Electrical Engineering (ICEE), 2020, pp. 1-6, doi: 10.1109/ICEE49691.2020.9249814.
    [42] P. R. Mohanty, A. K. Panda and D. Das, "An active PFC boost converter topology for power factor correction," 2015 Annual IEEE India Conference (INDICON), 2015, pp. 1-5, doi: 10.1109/INDICON.2015.7443118.
    [43] IXYS, "DSEI 60_12A Datasheet," 2000.
    [44] Texas Instruments, "TL084 Datasheet," 1995.

    無法下載圖示 校內:2027-08-29公開
    校外:2027-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE