| 研究生: |
李慶恩 Lee, Ching-En |
|---|---|
| 論文名稱: |
適用於內嵌式觸控或高解析度顯示器之氫化非晶矽閘極驅動電路設計 Design of a-Si:H Gate Driver Circuits for In-Cell Touch or High-Resolution Displays Application |
| 指導教授: |
林志隆
Lin, Chih-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 氫化非晶矽 、閘極驅動電路 、高解析度 、內嵌式觸控 |
| 外文關鍵詞: | a-Si:H, gate driver circuit, high resolution, in-cell touch |
| 相關次數: | 點閱:96 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用氫化非晶矽製程將閘極驅動電路整合於玻璃基板之技術被廣泛的應用於主動式矩陣液晶顯示器,歸因於此技術能省去外部驅動IC而降低成本,以及簡單且高良率的氫化非晶矽薄膜電晶體製程。高解析度顯示器已成為當今發展趨勢,因其能提供使用者更逼真且清晰的視覺體驗。然而當顯示器的解析度或是掃描頻率提高,顯示器每一列畫素的操作時間勢必減少,因此閘極驅動電路產生的驅動訊號必須更快速的開關每一列畫素。除了高解析度外,將內嵌式觸控技術整合於顯示器上也是目前趨勢,因為相較於其他傳統觸控技術,內嵌式觸控能使面板有更輕薄的外觀。然而內嵌式觸控技術將觸控元件高度整合於面板畫素,因此觸控訊號勢必更容易受到顯示器至觸控串擾(display-to-touch crosstalk, DTX)影響,進而使觸控訊號失真,為了避免上述情形,在面板執行觸控偵測時,顯示器的驅動訊號必須保持定值。
此論文提出三個使用氫化非晶矽薄膜電晶體設計之電路,其中兩個是為高解析度與高掃描頻率顯示器所設計之閘極驅動電路,而另外一個則是為內嵌式觸控面板所設計之驅動電路。所提出電路之可行性已由HSPICE模擬軟體驗證。第一個電路為一閘極驅動電路,由十一顆薄膜電晶體與三個電容組成。此電路設有兩階段的電容耦合操作,使電路的驅動薄膜電晶體具備更高的閘極端電壓與驅動能力來快速的對輸出點充電。此外,當輸出點洩流時,透過兩薄膜電晶體之設計,驅動薄膜電晶體的閘極端電壓將不受輸出點電壓下降影響,因此其能保持原有的高驅動能力來快速的將輸出點洩流至低電位。模擬結果顯示,輸出波型之上升與下降時間分別為2.06 µs與1.39 µs。第二個電路為由九顆薄膜電晶體與三個電容組成的雙向閘極驅動電路,此電路的驅動薄膜電晶體之閘極端同樣設有兩次的電容耦合操作,以加速對輸出點的充放電。此外,藉由多功能的薄膜電晶體設計與對稱的輸入訊號配置,與第一個電路相比,此電路能達到更精簡的架構,並具備雙向傳輸功能。根據模擬結果,電路輸出波型之上升與下降時間分別為1.98 µs與1.64 µs,驗證了此電路應用於高解析度顯示器之可行性。第三個電路是一個為內嵌式觸控面板設計之驅動電路,由三顆薄膜電晶體與一個電容組成。為了避免薄膜電晶體於觸控偵測期間受到長時間偏壓,所提出之電路能夠儲存來自觸控偵測前的閘極驅動電路輸出電荷,並且在觸控偵測結束後啟動下一級閘極驅動電路。根據模擬結果,當提出電路之輸出薄膜電晶體臨界電壓飄移10 V時,暫停前後所產生的閘極驅動波型之上升時間與下降時間只分別相差2.14%與1.13%。
Integrated gate driver circuits on glass substrates based on hydrogenated amorphous silicon (a-Si:H) technology have been extensively used in active-matrix crystal displays (AMLCDs), owing to the cost reduction by elimination of external driver ICs, and the simple and high yield fabrication process of a-Si:H thin-film transistors (TFTs). AMLCDs with high resolution have become the current trend, which can provide more vivid and clear patterns. Nevertheless, as the resolution of displays increases, the scan time of each row line reduces, so the row lines have to be turned on and off faster. Another trend of AMLCDs is embedded in-cell touch technology, because it provides thinner device thickness compared with other traditional touch technologies. However, this technology highly integrates touch components into the pixel cells of the display, so the touch operation may be susceptible to display-to-touch crosstalk (DTX), which distorts the sensed touch signals. Thus, the display signals must remain constant when touch sensing is performed.
This thesis proposes three circuits based on a-Si:H TFTs. Two of them are gate driver circuits designed for high-resolution displays, and the other one is a driving circuit designed for in-cell touch panels. The feasibility of these circuits is verified by HSPICE simulator. The first circuit is an 11T3C gate driver circuit. This circuit is designed with two capacitive coupling steps to achieve higher gate-node voltage of its driving TFT, so the driving TFT has high driving capability to fast charge its output node. In addition, when the output node is discharging, two TFTs are designed to prevent the gate-node voltage of the driving TFT from decreasing. Thus, the driving TFT maintains the high driving capability to fast discharge its output node. Simulation results show that the rising and falling time of the output waveform are 2.06 μs and 1.39 μs, respectively. The second circuit is a 9T3C bidirectional gate driver circuit. Two steps of capacitive coupling are also designed for the gate node of its driving TFT to accelerate the charge and discharge of the output node. Furthermore, with the design of multi-function TFTs and symmetrical input signals, this circuit can achieve simpler configuration compared with the first circuit and operate in bi-direction. Based on simulation results, the rising and falling time of the output waveform are 1.98 µs and 1.64 µs, respectively, which is suitable for use in the high-resolution displays. The third circuit is a 3T1C driving circuit developed for in-cell touch panel. This circuit is designed to store the charges from the output waveform generated before touch sensing period, and activate the gate driver circuit of the next stage after that period. Thus, the long-term stress of the driving TFT of gate driver circuits during the touch sensing period can be prevented. According to the simulation results, when the VTH of the driving TFT of the proposed circuit shifts by 10 V, the rising and falling time of the output waveform that follows the touch sensing period differ by only 2.14% and 1.31% from those that precede the period, respectively.
[1] U. B. Kang and Y. H. Kim, “A new COG technique using low temperature solder bumps for LCD driver IC packaging applications,” IEEE Trans. Compon. Packag. Technol, vol. 27, no. 2, pp. 253–258, Jan. 2004.
[2] H. Kristiansen and J. Liu, “Overview of conductive adhesive interconnection technologies for LCDs,” IEEE Trans. Comp., Packag., Manuf. Technol. A, vol. 21, no. 2, pp. 208–214, Jan. 1998.
[3] Y. H. Tai, “Design and operation of TFT-LCD panels,” Wunan, 2006.
[4] R. Joshi, “Chip on glass-interconnect for row/column driver packaging,” Microelectr. J., vol. 29, pp. 343–349, Jun. 1998.
[5] J. Liu, “ACA bonding technology for low cost electronics packaging applications current status and remaining challenges,” in Proc. 4th Int.Conf. Adhesive Joining and Coating Technology Electronic Manufacturing, pp. 1–15, 2000.
[6] C. T. Liu, “Revolution of the TFT LCD technology,” J. Display Technol., vol. 3, no. 4, pp. 342–350, Dec. 2007.
[7] J. C. Hwang, “Advanced low-cost bare-DIE packaging technology for liquid crystal displays,” IEEE Trans. Comp., Packag., Manuf. Technol. A, vol. 18, no. 3, pp. 458–461, Mar. 1995.
[8] S. H. Lo, C. C. Wei, W. C. Lin, I. Wang, C. C. Shih, and Y. E. Wu, “Integrated gate driver circuit with one conduction path for charge-discharge,” in SID Symp. Dig., 2006, pp. 231–234.
[9] S. H. Moon, Y. S. Lee, M. C. Lee, B. H. Berkeley, N. D. Kim, and S. S. Kim, “Integrated a-Si:H TFT gate driver circuits on large area TFT-LCDs,” in SID Symp. Dig., 2007, pp. 1478–1481.
[10] C. Hordequin, J. M. Bayot, T. Kretz, S. Yon, S. Arfuso, N.Szydlo, and H. Lebrun, “A 1” VGA LC light valve using a-Si:H TFTs with integrated drivers”, EuroDisplay 02, pp. 387–390, 2002.
[11] J. H. Yang, S. C. Jung, Y. S. Son, S. T. Ryu, and G. H. Cho, “A noise-immune high-speed readout circuit for in-cell touch screen panels,” IEEE Transactions on Circuits and Systems I: Regular Papers., vol. 60, no. 7, pp. 1800–1809, Jul. 2013.
[12] Y. T. Tai, W. L. Pearn, K. B. Huang, and L. W. Liao, “Capability assessment for weibull in-cell touch panel manufacturing processes with variance change,” IEEE Trans. Semiconductor Manufacturing., vol. 27, no. 2, pp. 184–191, May 2014.
[13] D. Ito, T. Suzuki, K. Noguchi, and Y. Nakajima, “Newly developed 5.5 inch WQHD display with hybrid in-cell capacitive touch technology,” in Proc. Int. Display Workshops, pp. 1445–1448, 2015.
[14] C. Kim, D. S. Lee, J. H. Kim, H. B. Kim, S. R. Shin, J. H. Jung, I. H. Song, C. S. Jang, K. S. Kwon, S. H. Kim, G. T. Kim, J. H. Yoon, B. Y. Lee, B. K. Kim, and I. B. Kang, “Advanced in-cell touch technology for large sized liquid crystal displays,” in SID Symp. Dig., 2015, pp. 895–898.
[15] G. Kawachi, M. Ishii, and N. Konishi, “Transient behavior of the a-Si:H/Si3N4 MIS capacitor and its impact on image quality of AMLCDs addressed by a-Si:H thin-film transistors,” J. Display Technol., vol. 3, no. 1, pp. 52–56, Mar. 2007.
[16] Y. S. Son and G. H. Cho, “Design considerations of channel buffer amplifiers for low-power area-efficient column drivers in active-matrix LCDs,” IEEE Trans. Consumer Electronics, vol. 54, no. 2, pp. 648–656, May 2008.
[17] J. S. Chen and M. D. Ker, “New gate-bias voltage-generating technique with threshold-voltage compensation for on-glass analog circuits in LTPS process,” J. Display Technol., vol. 3, no. 3, pp. 309–314, Sep. 2007.
[18] S. J. Ashitani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., vol. 3, no. 1, pp. 36–39, Mar. 2007.
[19] C. L. Lin, P. S. Chen, M. H. Cheng, Y. T. Liu, and F. H. Chen, “A three-transistor pixel circuit to compensate for threshold voltage variations of LTPS TFTs for AMOLED displays,” J. Display Technol., vol. 11, no. 2, pp.146–148, Feb. 2015.
[20] C. L. Lin, Y. T. Liu, C. E. Lee, and T. C. Chu, “a-InGaZnO active-matrix organic LED pixel periodically detecting thin-film transistor threshold voltage once for multiple frames,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1166–1168, Nov. 2015.
[21] D. Geng, Y. F. Chen, M. Mativenga, and J. Jang. "30 μm-pitch oxide TFT-based gate driver design for small-size, high-resolution, and narrow-bezel displays," IEEE Electron Device Lett., vol. 36, no. 8, pp. 805–807, Aug. 2015.
[22] C. L Lin, F. H. Chen, Y. W. Du, and M. H. Cheng, "Simplified gate driver circuit for high-resolution and narrow-bezel thin-film transistor liquid crystal display applications," IEEE Electron Device Lett., vol. 36, no. 8, pp. 808–810, Aug. 2015.
[23] L. W. Chu, P. T. Liu, and M. D. Ker, "Design of integrated gate driver with threshold voltage drop cancellation in amorphous silicon technology for TFT-LCD application," J. Display Technol., vol. 7, no. 12, pp. 657–664, Dec. 2011.
[24] J. W. Choi, M. S. Kwon, J. H. Koo, J. H. Park, S. H. Kim, D. H. Oh, S. W. Lee, and J. Jang, "Distinguished student paper: Noble a-Si:H gate driver with high stability," in SID Symp. Dig., 2008, pp. 1227–1230.
[25] B. S. Bae, J. W. Choi, J. H. Oh, and J. Jang, "Level shifter embedded in driver circuits with amorphous silicon TFTs," IEEE Trans. Electron Devices, vol. 53, no. 3, pp. 494–498, Mar. 2006.
[26] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Jen, and S. Zhang, "Design of integrated amorphous-silicon thin-film transistor gate driver," J. Display Technol., vol. 9, no. 1, pp. 7–16, Jan. 2013.
[27] C. L. Lin, M. H. Cheng, C. D. Tu, and M. C. Chuang, "Highly reliable integrated gate driver circuit for large TFT-LCD applications," IEEE Electron Device Lett., vol. 33, no. 5, pp. 679–681, May 2012.
[28] C. L. Lin, M. H. Cheng, C. D. Tu, C. C. Hung, and J. Y. Li, "2-D-3-D switchable gate driver circuit for TFT-LCD applications," IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2098–2105, Jun. 2014.
[29] C. Liao, Z. Hu, D. Dai, S. Chung, T. S. Jen, and S. Zhang, "A compact bi-direction scannable a-Si:H TFT gate driver," J. Display Technol., vol. 11, no. 1, pp. 3–5, Jan. 2015.
[30] J. W. Choi, J. I. Kim, S. H. Kim, and J. Jang, "Highly reliable amorphous silicon gate driver using stable center-offset thin-film transistors," IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2330–2334, Sep. 2010.
[31] C. L. Lin, C. D. Tu, M. C. Chung, and J. S. Yu, "Design of bidirectional and highly stable integrated hydrogenated amorphous silicon gate driver circuits," J. Display Technol., vol. 7, no. 1, pp. 10–18, Jan. 2011.
[32] C. L. Lin, C. D. Tu, C. C. Hung, M. H. Cheng, and C. E. Wu, "Power consumption ameliorated for integrated gate driver circuit with low frequency clock," in SID Symp. Dig., 2011, pp. 1285–1287.
[33] T. H. Hwang, S. I. Hong, W. K. Hong, W. H. Cui, I. S. Yang, O. K. Kwon, C. W. Byun, S. H. Ko Park, C. S. Hwang, and K. I. Cho, "A scan driver circuit using transparent thin film transistors," in SID Symp. Dig., 2009, pp. 1136–1139.
[34] F. Mautice, H. Lebrun, N. Szydlo, U. Rossini, and R. Chaudet, “High resolution projection valve with the amorphous silicon AMLCD technology,” Proc. Of SPIE (Part of the IS&T/SPIE, Conference on Projection Displays IV), vol. 3296, pp. 92–99, Jan. 1998.
[35] D. A. Stronks, A. Al-Dahle, and W. H. Yao, "Devices and methods for reduction of display to touch crosstalk," United States Patent., No. 0084911, 2015.
[36] S. Y. Lee, S. C. Kim, and S. E. Pyo, "Display device with integrated touch screen and method of driving the same," United States Patent., No. 0320427, 2014.
[37] Y. C. Park and S. S. Hwang, "Display device having partial panels and driving method thereof," United States Patent., No. 0160766, 2015.