簡易檢索 / 詳目顯示

研究生: 黃柏壽
Huang, Po-So
論文名稱: 淺水不規則波浪的群性對細砂質海床液化反應影響之試驗探討
An Experimental Study of the Influence of Wave Grouping of Irregular Waves on the Fluidization Response of a Fine Sandy Seabed in Shallow Water
指導教授: 臧效義
Tzang, Shiaw-Yih
歐善惠
Ou, Shan-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 132
中文關鍵詞: 淺水波群因子不規則波浪海床液化
外文關鍵詞: shallow water., grouping factor, irregular wave, seabed fluidization
相關次數: 點閱:141下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本試驗研究以斷面水槽試驗方式,探討淺水處不規則波浪群性參數對海床液化反應之影響。由JONSWAP波譜型式造波的結果顯示,起始液化反應時,整體海床幾乎同時發生液化,液化深度與液化海床上之波高均由上游向下游處遞減。此外,隨超額孔隙水壓抬升,垂直方向流速振幅放大,流速分量之能量衰減主要發生於主頻之能量。海床砂面隨之發生振盪,且砂面振盪最大值與液化深度df成正比趨勢。
    水面波動之SIWEH (Smooth Instantaneous Wave Energy History)歷程變化影響孔隙水壓力階段性抬升,且漂砂濃度抬升經常伴隨波群波峰之到來。起始液化試次中,群高因子GFH (Grouping Factor of Height)與波高水深比Hs /h之迴歸線可作為本試驗液化反應發生之臨界參考指標,代表群性愈高之波浪使海床發生起始液化所需之有義波高愈小。起始液化試次群性參數影響中,波群因子GF (Groupiness Factor)及GFH與液化深度df有較佳之相關性。液化後之垂直流速w之群性參數連長 與懸浮漂砂濃度有最佳之相關性,為影響漂砂濃度之重要因子。由三種類型海床反應群性參數互相之相關性比較,得知具群性之不規則波浪引致海床液化反應可以GF及GFH作為波浪高度群性參數;相鄰波高相關係數rHH(1) (Correlation Coefficient of Wave Heights)可作為波群現象之再現參數;以及 適合作為長度群性參數。

    This study investigates with flume experiments the influence of wave grouping parameters of irregular waves on fluidization response of a fine sandy seabed in shallow water. The measurements have shown that, in an initially fluidized response, the thickness of fluidized soil layers (df) and flow velocity spectrum at peak frequency decrease with decaying water waves in the down-stream direction. At a fixed location above a fluidized bed, flow velocities in both vertical and horizontal directions continue to change with the build-ups of excess pore pressure.
    Among the wave group parameters, the SIWEH (Smooth Instantaneous Wave Energy History) of water surface waves are found to be associated with the stepped build-ups of excess pore pressure. In particularly on the rising stage of the highest wave in a group, the suspended sediment concentrations generally increase significantly. From initially fluidized responses, both the regressed lines of GFH (Grouping Factor of Height) of wave and the wave height are indicative of the critical index on fluidization. In particular GFH and GF (Groupiness Factor) are well correlated with df . The group factor in length (Run) of vertical velocity after fluidization correlates well with suspended sediment concentration, and plays an important role in suspended sediment concentrations. In addition, both the length parameter and the correlation coefficient between subsequent high waves γHH(1) are critical to the fluidized response

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XII 符號說明 XIV 第一章 緒論1 1-1 研究動機與目的 1 1-2 本研究組織 3 第二章 相關背景 4 2-1 波浪引致之海床液化典型反應機制 4 2-1-1 液化定義 4 2-1-2 典型細砂質海床液化反應 5 2-2波群於液化底床上之衰減 10 2-3 現場觀測 13 2-4 群性參數 16 2-4-1 高度群性 16 2-4-2 長度群性 17 第三章 試驗工作 19 3-1 試驗佈置與步驟 19 3-2 儀器率定 23 3-3 試驗條件 24 3-4 資料處理與分析 44 3-5 波浪率定 44 3-5-1 γ率定 45 3-5-2 水深影響 47 3-5-3 γ對群性參數之影響 48 3-5-4 波浪率定 51 第四章 海床液化反應影響之量測結果 56 4-1 孔隙水壓力變化 56 4-2 近底床動力反應 66 4-3 波浪衰減反應之影響 84 4-4 海床砂面變化 91 第五章 波浪群性影響之討論 96 5-1 群性與壓力 96 5-2 群性與懸浮漂砂濃度 105 5-3 群性與波浪衰減 114 5-4 群性參數相關性 116 第六章 結論與建議 124 6-1 結論 124 6-2 建議 125 參考文獻 127 附錄A 試驗影像 130

    1.Conley, D. C. and D. L. Inman, (1992), Filed observation of the fluid-granular boundary layer under near-breaking waves. J. Geophy. Res., Vol. 97 (C6), pp. 9631-9643.
    2.Foda, M. A. and S. Y. Tzang, (1994), Resonant fluidization of silty soil by water waves. J. Geophys. Res., Vol. 99 (C10), pp. 20463-20475.
    3.Funke, E. R. and E. P. D. Mansard, (1980), On the synthesis of realistic sea state. Proc. 17th Int. Conf. on Coastal Eng., ASCE, Sydney, pp. 2974-2911.
    4.Goda, Y., (2000), Random Seas and Design of Maritime Structures. World Scientific, Vol. 15.
    5.Hanes, D. M. and D. A. Huntley, (1986), Continuous measurement of suspended sand concentration in a wave dominated nearshore environment. Cont. Shelf Res., Vol. 6 (4), pp. 585-596
    6.Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Ende, J. H. Ewing, H. Gienapp, D. E. Hassolmann, P. Kruseman, H. Meerlurg, P. Miller, D. J. Olbers, K. Richter, W. Sell, and H. Walden, (1973), Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydr. Zeit Reihe A (80).
    7.Hay, A. E. and A. J. Bowen, (1994), Space-time variability of sediment suspension in the surf zone. Proc. Coastal Dyn. 94, ASCE, Barcelona, Spain, pp. 962-975.
    8.Huang, C. M., (1996), A fluidization model for cross-shore sediment transport. Ph. D. Dissertation, University of California, Berkeley, U.S.A.
    9.Ifuku, M., (1988), Field observation and numerical calculation of suspended sediment concentration in the surfzone. Coast. Eng. Japan, Vol. 30 (2), pp. 75-88.

    10.Johnson, R. R., E. P. D. Mansard, and J. Ploeg, (1978), Effects of wave grouping on breakwater stability. Proc. 16th Int. Conf. on Coastal Eng., ASCE, Hamburg, pp. 2228-2243.
    11.List, J. H., (1991), Wave groupiness variations in the nearshore. Coasal Eng., Vol. 15, pp. 475-796
    12.Mei, C. C. and M. A. Foda, (1981), Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Marine Geol., Vol. 3, pp. 123-150.
    13.Niteto Borge, J. C., S. Lehner, A. Niedermeier, and J. Schulz-Stellenflenth, (2004), Detection of ocean wave groupiness from spaceborne synethetic aperture radar. J. Geophys. Res., Vol. 109 (C07005).
    14.Notle, K. G. and F. H. Hsu, (1972), Statistics of ocean wave group. Proc. 4th Offshore Technology Conf., (1688), pp. 637-644.
    15.Okayasu, A., T. Matsumoto, and Y. Suzuki, (1996), Laboratory experiments on generation of long waves in the surf zone. Proc. 22th Int. Conf. on Coastal Eng., ASCE, New York, pp. 1321-1334.
    16.Rye, H., (1982), Ocean wave groups. Report UR-82-18, Dept. of Marine Technology, U. of Trondheim.
    17.Tsai, C. H., M. Y. Su, and J. S. Huang, (2004), Observations and conditions for occurrence of dangerous coastal waves. Ocean Eng., Vol. 13, pp. 745-760.
    18.Tzang, S. Y., (1992), Water wave-induced soil fluidization in a cohesionless seabed. Ph. D. Dissertation, University of California, Berkeley, U. S. A.
    19.Williams, J. J., C. P. Rose, and P. D. Thone, (2002), Role of wave groups in suspension of sandy sediments. Marine Geol., Vol. 183, pp. 17-29.
    20.許國強 (1988),「群波統計特性之研究-現場波浪資料分析」,國立成功大學水利及海洋工程學系碩士論文。
    21.黃清和、蔡立宏、林柏青、蔡金吉 (1996),「碎波帶內懸浮質濃度分佈研究」,第十八屆海洋工程研討會論文集,第576-580頁。
    22.林柏青、莊甲子、周憲德 (1998),「群波與近岸底床輸砂關係研究」,第二十屆海洋工程研討會論文集,第453-458頁。
    23.蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
    24.俞聿修 (2000),「隨機波浪及其工程應用」,大連理工大學出版社 印行。
    25.彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
    26.簡德深 (2001),「簡諧波與線性波群引致之細砂質海床土壤液化反應與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
    27.賴宏祐 (2002),「淺水之規則波與波群引之細砂質海床液化與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
    28.劉穎欣 (2002),「不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究」,國立成功大學水利及海洋工程學系碩士論文。
    29.陳勇隆 (2003),「近液化底床波浪引致之懸浮漂砂傳輸特性初步研究」,國立成功大學水利及海洋工程學系碩士論文。
    30.閆澍旺、朱平、耿久月、程國勇、劉潤、紀玉城、孫紅月、馮軍 (2003),「長江口二期工程NIIB標段地基土動三軸試驗研究報告」,天津大學岩土工程研究所。
    31.楊昀哲 (2004),「規則波引致單一矩形潛體前之液化細砂質海床行為試驗探討」,國立成功大學水利及海洋工程學系碩士論文。
    32.鄭肇宗 (2005),「規則波與細砂質海床上透水潛體交互作之試驗研究」,國立成功大學水利及海洋工程學系碩士論文。

    下載圖示 校內:立即公開
    校外:2006-07-20公開
    QR CODE