簡易檢索 / 詳目顯示

研究生: 黎長灣
Vinh, Le Truong
論文名稱: 應用非支配排序遺傳演算法於HBV水文模式率定:以南臺灣曾文水庫集水區為例
Application of Non-Dominated Sorting Genetic Algorithm in Calibration of HBV Rainfall-runoff Model: A Case Study of Tsengwen Reservoir Catchment in Southern Taiwan
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 67
外文關鍵詞: multi-objective optimization algorithm, the HBV rainfall-runoff model, calibration strategy
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The objective of this study is to apply a multi-objective optimization algorithm for tuning parameters of the HBV rainfall-runoff model. This study selected the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) as optimization algorithm and examined various objective functions for investigating the performance of the HBV model in different flow situations (e.g., low flow and high flow). Two objective functions were chosen in this study: root mean squared error (RMSE) and mean absolute percentage error (MPE). Previous studies (e.g., Getahun and Van Laned, 2015) showed that the HBV might give bias estimates for low and high flow situations. Thus, the study proposed a season-dependent calibration strategy for further improving the biased estimates in different flow situations. The strategy is composed of two parts: (1) the RMSE-based objective function is used for wet seasons only (i.e., high flow situations); (2) the MPE-based objective function is used for dry seasons only (i.e., low flow situations). The preliminary results suggest that the proposed season-dependent strategy can improve results.

    ACKNOWLEDGEMENTS II TABLE OF CONTENTS III LIST OF TABLES V LIST OF FIGURES VII CHAPTER ONE: INTRODUCTION 1 1.1 General introduction 1 1.1.1 Motivation 1 1.1.2 Objectives of this study 1 1.2 Literature review 2 1.2.1 Hydrological models and the HBV model 2 1.2.2 Model calibration 3 1.2.3 NSGA-II application in hydrological model 7 1.3 Structure of the thesis 9 CHAPTER TWO: STUDY AREA AND DATA SETS 11 2.1 Study area 11 2.2 Data sets 11 CHAPTER THREE: METHODOLOGIES 13 3.1 MHBV model 13 3.2 Multi-objective function and Pareto-optimal solutions 18 3.3 NSGA-II Algorithm 21 3.3.1 Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II 21 3.3.2 Testing cases for NSGA-II 24 3.4 Calibration strategies for MHBV model 27 3.4.1 Two single objective functions 29 3.4.2 Multi-objective function 29 3.4.3 Improvement of multi-objective function 29 3.5 Framework for linking MHBV with NSGA-II and simulation 29 CHAPTER FOUR: RESULTS AND DISCUSSIONS 34 4.1 Two single objective functions 34 4.2 Multi-objective function 37 4.3 A comparison between the results by using two single objective functions and multi-objective function 40 4.4 Improvement of multi-objective function 41 4.5 Discussions 55 CHAPTER FIVE: CONCLUSION AND SUGGESTIONS 56 5.1 Conclusions 56 5.2 Suggestions 56 REFERENCES 58 APPENDICES 61 Appendix A 61 Appendix B 64

    Abebe, N. A., Ogden, F. L., & Pradhan, N. R. (2010). Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation. Journal of Hydrology, 389(3-4), 301-310.
    Arheimer, B. (1998). Riverine Nitrogen – analysis and modeling under Nordic conditions. Kanaltryckeriet, Motala, pp. 200.
    Bekele, E. G., & Nicklow, J. W. (2007). Multi-objective automatic calibration of SWAT using NSGA-II. Journal of Hydrology, 341(3-4), 165-176.
    Bergström, S., 1976, Development and application of a conceptual runoff model for Scandinavian catchments, Report RHO 7, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
    Bergström, S. (1992), The HBV model – its structure and applications, Report RHO 4, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
    Bergström, S. (1995), The HBV model. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, CO, USA, pp. 443-476.
    Boughton, W., & Chiew, F. (2007). Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model. Environmental Modelling & Software, 22(4), 476-487.
    Brandt, M. & Bergström, S. (1994). Integration of Field Data into Operational Snowmelt-runoff Models. Nordic Hydrol. 25, 101- 112.
    Dakhlaoui, H., Bargaoui, Z., & Bárdossy, A. (2012). Toward a more efficient Calibration Schema for HBV rainfall-runoff model. Journal of Hydrology, 444-445, 161-179.
    Deb Kalyanmoy, Associate Member, IEEE, Pratap Amrit, Agarwal Sameer & Meyarivan T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 82-197.
    Elsanabary, M. H., & Gan, T. Y. (2015). Evaluation of climate Anomalies Impacts on the Upper Blue Nile Basin in Ethiopia Using a Distributed and a Lumped Hydrologic Model. Journal of Hydrology, 530, 225-240.
    Fares, A., Awal, R., Michaud, J., Chu, P.-S., Fares, S., Kodama, K., & Rosener, M. (2014). Rainfall-runoff modeling in a flashy tropical watershed using the distributed HL-RDHM model. Journal of Hydrology, 519, 3436-3447.
    Getahun, Y. S., & Haj, V. L. (2015). Assessing the Impacts of Land Use-Cover Change on Hydrology of Melka Kuntrie Subbasin in Ethiopia, Using a Conceptual Hydrological Model. Hydrol Current Res, 6(210).
    Goldberg David E. (1989), Genetic Algorithm in Search, Optimization and machine learning, Addison Wesley.
    Hafezparast, M. (2013). A conceptual rainfall-runoff Model Using the Auto Calibrated NAM Models in the Sarisoo River. Journal of Waste Water Treatment & Analysis, 04(01).
    Halwatura, D., & Najim, M. M. M. (2013). Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling & Software, 46, 155-162.
    Hamon W.R., (1961), Estimating potential evapotranspiration. Journal of Hydraulics Division, 87(3), 107-120.
    Jutman, T. (1992). Production of a New Runoff Map of Sweden. Nordic Hydrological Conference, Alta, Norway, NHP report No. 30, 643-651.
    Liu, Y., & Sun, F. (2010). Sensitivity analysis and automatic calibration of a rainfall-runoff model using multi-objectives. Ecological Informatics, 5(4), 304-310.
    Smedt, M. S. a. F. D. (2009). Multi-objective calibration of a distributes hydrological model (WetSpa) using a genetic algorithm. Hydrol. Earth Syst. Sci., 13, 2137-2149.
    Yu, P.-S., & Yang, T.-C. (2000). Fuzzy multi-objective function for rainfall-runoff model calibration. Hydrology, 238, 1-14.
    Yu, P.-S., Yang, T.-C., Kuo, C.-M., Tseng, H.-W., & Chen, S.-T. (2014). Climate Change Impacts on Streamflow Drought: A Case Study in Tseng-Wen Reservoir Catchment in Southern Taiwan. Climate, 3(1), 42-62.
    Yu, P.-S., Yang, T.-C., & Wu, C.-K. (2002). Impact of climate change on water resources in southern Taiwan. Hydrology, 260, 161-175.
    Zakermoshfegh M, Neyshabouri, S. A. A. S., & Lucas, C. (2008). Automatic Calibration of lumped conceptual rainfall-runoff model using Particle Swarm Optimization. Applied Science, 8(20), 3703-3708.
    Zhang, L., & Cui, G. (2009). Automatic Calibration of a Hydrological Model Using Multiobjective Particle Swarm Optimization and TOPSIS. 617-621.
    Zhang, X. N. & G. Lindstrom, 1997, Development of an automatic calibration scheme for the HBV hydrological model. Hydrological Processes, 11, 1671-1682.
    Zhang, X., Srinivasan, R., & Bosch, D. (2009). Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. Journal of Hydrology, 374(3-4), 307-317.
    Zhou, J., Ouyang, S., Wang, X., Ye, L., & Wang, H. (2014). Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration. Water Resources Management, 28(3), 767-783.

    下載圖示 校內:2017-06-27公開
    校外:2017-07-27公開
    QR CODE