簡易檢索 / 詳目顯示

研究生: 黃智聰
Huang, Chih-Tsung
論文名稱: 曾文溪河口潮汐不對稱性特性研究
A Study on Tidal Asymmetry Characteristics in the Zengwen River Estuary
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: Delft-3D-FLOW曾文溪潮汐不對稱偏度
外文關鍵詞: Delft-3D-FLOW, Zengwen River, tidal asymmetry, skewness
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 潮汐不對稱是指當潮汐由深海傳遞至近岸時,因水深變淺或地形變化,使得非線性效應放大,衍生出高頻率或低頻的天文分潮,在不同頻率的分潮疊加下所產生漲退潮延時、流速以及峰值水位不對稱的現象。臺灣西部地勢平緩,河川下游多屬感潮河段,在河川逕流潮汐、波浪的交互作用下,潮汐不對稱現象將會更加明顯。
    本研究使用Delft3D-FLOW模擬曾文溪河道及沿岸水動力條件,並透過調和分析解析模擬範圍內天文潮分潮的振幅及相位角以估算潮汐不對稱特性,結果顯示現況曾文溪河道上游處為漲潮主導,越往下游隨著潮汐不對稱性偏度降低則逐漸轉變為退潮主導。沿岸部分以曾文溪河口為界,河口以南呈現退潮主導,以北則為漲潮主導。而河川流量效應會使M4分潮振幅成長,進而增加曾文溪河道內潮汐不對稱偏度,使得潮汐不對稱特性會往漲潮主導方向發展。此外,河道內M2及其倍頻分潮M4或M6的疊合,除了會使漲退潮延時不對稱之外,也會影響到最大漲退潮流速,進而減緩或加快物質傳輸速度。

    This study mainly used the Delft3D-FLOW to simulate the coastal hydrodynamics of the Zengwen River estuary and the surrounding nearshore areas. Tidal harmonic analysis was applied to analyze the amplitude and phase of tidal constituents and the corresponding tidal asymmetry skewness. The results indicated that the upstream area of the Zengwen River was mainly flood dominant; the decrease of tidal asymmetry skewness downstream of the Zengwen River area contributed to gradual ebb dominant. The north coast of the Zengwen River estuary is flood dominant, while the south coast of the estuary is ebb dominant. The increase of river discharge affects M4 development, increasing the tidal asymmetry skew-ness of the Zengwen River itself and making it more flood dominant. When M2 overlaps with M4 and M6 of specific higher frequencies, the flood and ebb times and flow rates are affected, possibly affecting sediment transportation in the estuary area and river channel.

    中文摘要 I Extended Abstract II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2-1 潮汐不對稱 2 1-2-2 河川逕流對潮汐不對稱之影響 5 1-3 研究架構 6 第二章 Delft3D模式介紹及建置 7 2-1 模式簡介 7 2-2 研究區域概述 9 2-2-1 流域地文 9 2-2-2 水文測站 10 2-3 曾文溪河口及近岸水動力模式建置 11 2-3-1 計算網格 11 2-3-2 地形水深 12 2-3-3 邊界條件 14 2-3-4 參數設定 17 2-4 模式率定驗證 17 2-5 潮汐不對稱估算方法 23 2-5-1 偏度 23 2-5-2 相對敏感係數 25 第三章 曾文溪河口潮汐不對稱特性 26 3-1 模擬情境設定 26 3-2 各項水理條件對曾文溪河口之潮汐時間不對稱性影響 31 3-2-1 現況 31 3-2-2 區域性波浪 35 3-2-3 河川流量 39 3-2-4 海水位上升 52 第四章 感潮河段潮汐不對稱特性與物質傳輸之相關性 63 4-1 潮汐不對稱性相對敏感分析 63 4-2 河川流量改變對分潮振幅及相位角影響 64 4-3 河道分潮流速不對稱對物質傳輸之影響 72 第五章 結論與建議 77 5-1 結論 77 5-2 建議 79 參考文獻 80

    1. Blanton, J. O., Lin, G., Elston, S. A. (2002). Tidal current asymmetry in shallow estu-aries and tidal creeks. Continental Shelf Research, 22(11-13), 1731-1743.
    2. Bolle, A., Wang, Z. B., Amos, C., De Ronde, J. (2010). The influence of changes in tidal asymmetry on residual sediment transport in the Western Scheldt. Continental Shelf Research, 30(8), 871-882.
    3. Cai, H., Savenije, H., Toffolon, M. (2014). Linking the river to the estuary: influence of river discharge on tidal damping. Hydrology and Earth System Sciences, 18(1), 287-304.
    4. Cai, H., Savenije, H. H., Yang, Q., Ou, S., Lei, Y. (2012). Influence of river discharge and dredging on tidal wave propagation: Modaomen Estuary case. Journal of Hydrau-lic Engineering, 138(10), 885-896.
    5. Deltares. (2018a). Delft3D-FLOW user manual. Deltares Delft, The Netherlands.
    6. Deltares. (2018b). Delft3D-WAVE User Manual. Deltares Delft, The Netherlands.
    7. Gallo, M. N., Vinzon, S. B. (2005). Generation of overtides and compound tides in Amazon estuary. Ocean Dynamics, 55, 441-448.
    8. Gong, W., Schuttelaars, H., Zhang, H. (2016). Tidal asymmetry in a funnel-shaped es-tuary with mixed semidiurnal tides. Ocean Dynamics, 66, 637-658.
    9. Guo, L., van der Wegen, M., Jay, D. A., Matte, P., Wang, Z. B., Roelvink, D., He, Q. (2015). River‐tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Y angtze R iver estuary. Journal of Geophysical Research: Oceans, 120(5), 3499-3521.
    10. Guo, L., Van der Wegen, M., Roelvink, J., He, Q. (2014). The role of river flow and tidal asymmetry on 1‐D estuarine morphodynamics. Journal of Geophysical Research: Earth Surface, 119(11), 2315-2334.
    11. Guo, L., van der Wegen, M., Wang, Z. B., Roelvink, D., He, Q. (2016). Exploring the impacts of multiple tidal constituents and varying river flow on long‐term, large‐scale estuarine morphodynamics by means of a 1‐D model. Journal of Geophysical Research: Earth Surface, 121(5), 1000-1022.
    12. Guo, L., Wang, Z. B., Townend, I., He, Q. (2019). Quantification of tidal asymmetry and its nonstationary variations. Journal of Geophysical Research: Oceans, 124(1), 773-787.
    13. Haigh, I. D., Eliot, M., Pattiaratchi, C. (2011). Global influences of the 18.61 year nod-al cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysi-cal Research: Oceans, 116(C6).
    14. Hoitink, A., Hoekstra, P., Van Maren, D. (2003). Flow asymmetry associated with as-tronomical tides: Implications for the residual transport of sediment. Journal of Geo-physical Research: Oceans, 108(C10).
    15. Horrevoets, A., Savenije, H., Schuurman, J., Graas, S. (2004). The influence of river discharge on tidal damping in alluvial estuaries. Journal of Hydrology, 294(4), 213-228.
    16. Kowalik, Z., Murty, T. S. (1993). Numerical modeling of ocean dynamics (Vol. 5): World Scientific.
    17. Lafta, A. A. (2022). Investigation of tidal asymmetry in the Shatt Al-Arab river estuary, Northwest of Arabian Gulf. Oceanologia, 64(2), 376-386.
    18. Li, L., Wang, X. H., Williams, D., Sidhu, H., Song, D. (2012). Numerical study of the effects of mangrove areas and tidal flats on tides: A case study of Darwin Harbour, Australia. Journal of Geophysical Research: Oceans, 117(C6).
    19. Matte, P.,Secretan, Y.,and Morin, J. (2014). Temporal and spatial variability of tidal‐fluvial dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal harmonic analysis. Journal of Geophysical Research: Oceans, 119(9), 5724-5744.
    20. Matte, P., Secretan, Y., Morin, J. (2017). Hydrodynamic modeling of the St. Lawrence fluvial estuary. I: Model setup, calibration, and validation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143(5), 04017010.
    21. Nidzieko, N. J. (2010). Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides. Journal of Geophysical Research: Oceans, 115(C8).
    22. Pawlowicz, R., Beardsley, B., Lentz, S. (2002). Classical tidal harmonic analysis in-cluding error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937.
    23. Pugh, D., Woodworth, P., (2014). Sea-level science: Understanding tides, surges, tsu-namis and mean sea-level changes. Cambridge University Press.
    24. Ranasinghe, R., Pattiaratchi, C. (2000). Tidal inlet velocity asymmetry in diurnal re-gimes. Continental Shelf Research, 20(17), 2347-2366.
    25. Sekovski, I., Armaroli, C., Calabrese, L., Mancini, F., Stecchi, F., Perini, L. (2015). Coupling scenarios of urban growth and flood hazards along the Emilia-Romagna coast (Italy). Natural Hazards and Earth System Science, 15(10), 2331-2346.
    26. Song, D., Wang, X. H. (2013). Suspended sediment transport in the Deepwater Navi-gation Channel, Yangtze River Estuary, China, in the dry season 2009: 2. Numerical simulations. Journal of Geophysical Research: Oceans, 118(10), 5568-5590.
    27. Song, D., Wang, X. H., Kiss, A. E., Bao, X. (2011). The contribution to tidal asym-metry by different combinations of tidal constituents. Journal of Geophysical Research: Oceans, 116(C12).
    28. Suh, S. W., Lee, H. Y., Kim, H. J. (2014). Spatio-temporal variability of tidal asym-metry due to multiple coastal constructions along the west coast of Korea. Estuarine, Coastal and Shelf Science, 151, 336-346.
    29. Van der Wegen, M.,and Roelvink, J. (2012). Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study, the Netherlands. Geo-morphology, 179, 152-167.
    30. Wang, Z. B., Jeuken, M., Gerritsen, H., De Vriend, H., Kornman, B. (2002). Mor-phology and asymmetry of the vertical tide in the Westerschelde estuary. Continental Shelf Research, 22(17), 2599-2609.
    31. Yu, X. Y., Zhang, W., Hoitink, A. J. F. (2020). Impact of river discharge seasonality change on tidal duration asymmetry in the Yangtze River Estuary. Scientific Reports, 10(1).
    32. Zhang, E., Savenije, H., Chen, S., Mao, X. (2012). An analytical solution for tidal propagation in the Yangtze Estuary, China. Hydrology and Earth System Sciences, 16(9), 3327-3339.
    33. Zhang, W., Cao, Y., Zhu, Y. L., Zheng, J. H., Ji, X. M., Xu, Y. W., Wu, Y., Hoitink, A. J. F. (2018). Unravelling the causes of tidal asymmetry in deltas. Journal of Hydrology, 564, 588-604.
    34. Zhu, Z.-N., Zhu, X.-H., Guo, X. (2017). Coastal tomographic mapping of nonlinear tidal currents and residual currents. Continental Shelf Research, 143, 219-227.
    35. 曾志明(2000),「河口三角洲成長過程之研究」,國立成功大學水利及海洋工程學系博士論文。
    36. 經濟部水利署第六河川局(2019),「台南海岸防護(急水溪口至曾文溪口)基本資料監測調查分析」。
    37. 經濟部水利署第六河川局(2019),「曾文溪輸砂對鄰近海岸砂源補充監測」。
    38. 臺南市政府(2019),「臺南市鹿耳門溪口海岸監測調查及淤沙問題之研究評估」。

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE