| 研究生: |
黃建霖 Huang, Chien-Lin |
|---|---|
| 論文名稱: |
使用多供應電壓源與多臨界電壓在低功率數位訊號處理之應用的快速排程與指定演算法 A Fast Simultaneous Scheduling and Assignment of Multiple Supply Voltages and Multi-threshold Voltages for Low-Power DSP Applications |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 低功率 、多供應電壓源 、多臨界電壓 |
| 外文關鍵詞: | Low-Power, Multi-threshold Voltages, Multiple Supply Voltages |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們提出兩個可同時排程與指定多電壓源與多臨界電壓在高階合成的演算法。此二種演算法的考量可以應用在降低動態與靜態功率的方面。第一種演算法ENSEMBA可以降低功能元件在限制的條件下的動態與靜態功率。第二種演算法AENSEMBA可以降低在限制條件下功能元件的動態與靜態功率,暫存器的動態靜態功率,準位轉換器以及多工器的功率。此二種演算法,可以在使用者給定的時間限制與面積限制下去計算何種排程與各個硬體需要工作在何種供應電壓源與臨界電壓。而ENSEMBA為AENSEMBA的核心基礎,透過ENSEMBA,除了可以給使用者一個初步較快速的排程與指定電壓結果外也可以驗證我們所提出的演算法是有效的。AENSEMBA架構在ENSEMBA之上,AENSEMBA可以比ENSEMBA多處理暫存器,準位轉換器和多工器的部份,而且可以提供比ENSEMBA更多的資訊給IC後端設計的自動化軟體來加速IC設計時間。經過測試ENSEMBA的演算法可以使我們的測試檔在180nm的製程上有20%至41%的能量節省效果、在32nm的製程上有67%至96%的能量節省效果,AENSEMBA的演算法可以使我們的測試檔在180nm的製程上有16%至40%的能量節省效果、在32nm的製程上有65%至95%的能量節省效果。
In the thesis, we present two fast algorithms for simultaneous scheduling and assignment of multiple supply voltages and multi-threshold voltages in high level synthesis. We consider not only dynamic energy consumption but also static energy consumption for data-dominant applications. The first algorithm uses Energy-Sensitive Move-Based (ENSEMBA) scheduling method to minimize the energy consumption of functional units simultaneously under constraints. The second algorithm, Aggressive Energy-Sensitive Move-Based (AENSEMBA) scheduling, is an enhanced version of ENSEMBA. It can handle energy consumption related to not only functional resources but also registers as well as level converters. The two algorithms can handle the scheduling of operations, the assignment of supply voltages and threshold voltages under user-define timing and area constraints. ENSEMBA is the core base of AENSEMBA, ENSEMBA can give users enough information to schedule operations and assign voltages and it can also prove that our design concept is efficient. AENSEMBA can handle more issues than ENSEMBA and it can give more information to back-end EDA tools to speed up the IC design time. ENSEMBA algorithm can save energy consumption from 20% to 41% for DSP test cases in technology process 180nm and from 67% to 96% for the same DSP test cases in technology process 32nm. AENSEMBA algorithm can save energy consumption from 16% to 40% for 180nm and from 65% to 95% for 32nm.
[1] D. D. Gajski and L. Ramachandran, “Introduction to High-Level Synthesis”, IEEE Design & Test of Computers, Volume 11, Issue 4, pp. 44 - 54, winter, 1994.
[2] Giovanni De Micheli, “Synthesis and Optimization of Digital Circuit”, McGRAW-HILL, pp. 190 - 191, 1994.
[3] M.C. Johnson and K. Roy, “Datapath Scheduling with Multiple Supply Voltages and Level Converters”, ACM Transactions on Design Automation of Electronic Systems (TODAES), Volume 2, Issue 3, pp. 227 - 248, Jul, 1997.
[4] L. Wang, Y. Jiang, and H. Selvaraj, “Synthesis Scheme for Low Power Designs with Multiple Supply Voltages by Heuristic Algorithms”, IEEE Proceedings of the International Conference on Information Technology: Coding and Computing, pp. 826 - 830, 2004.
[5] M. Hariyama, T. Aoyama, and M. Kameyama, “Genetic Approach to Minimizing Energy Consumption of VLSI Processors Using Multiple Supply Voltages”, IEEE Transactions on Computers, Volume 54, Issue 6, pp. 642 - 650, Jun. 2005.
[6] D. Chen, J. Cong, and J. Xu, “Optimal Simultaneous Module and Multivoltage Assignment for Low Power”, ACM Transactions on Design Automation of Electronic Systems (TODAES) , Volume 11, Issue 2, pp. 362 - 386, Apr. 2006.
[7] M. Hariyama, S. Ogata, and M. Kameyama, “DSP-Specific Field-Programmable VLSI and its CAD Environment”, IEEE 48th Midwest Symposium on Circuits and Systems, Volume 1, pp. 651 - 654, Aug. 2005.
[8] M. Kameyama, and H. Mohammad Munirul, “Fine-Grain Cell Design for Multiple-Valued Reconfigurable VLSI Using a Single Differential-Pair Circuit”, IEEE 36th International Symposium on Multiple-Valued Logic, pp. 13 - 18, 2006.
[9] M. Hariyama, S. Yamadera, and M. Kameyama, “Minimizing Energy Consumption Based on Dual-Supply-Voltage Assignment and Interconnection Simplification”, IEICE Transactions on Electronics, Volume E89–C, No.11, pp. 1551 – 1558, Nov. 2006.
[10] L. Wang, Y. Jiang, and H. Selvaraj, “A Synthesis Scheme for Low Power Designs with Multiple Voltages under Timing Constraints”, NASA Proc. 11th VLSI Symp, 2003.
[11] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.W. Brodersen, “Optimizing Power Using Transformations”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 14, Issue 1, pp. 12 - 31, Jan. 1995.
[12] D. Chen, J. Cong, and Y. Fan, “Low-Power High-Level Synthesis for FPGA Architectures”, International Symposium on Low Power Electronics, pp134 - 139, 2003.
[13] A. Manzak and C. Chakrabarti, “A Low Power Scheduling Scheme with Resources Operating at Multiple Voltages”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 6-14, Feb. 2002.
[14] K. Roy, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits”, IEEE Proceedings, Volume 91, No. 2, pp. 305 - 327, Feb. 2003.
[15] S. Raje and M. Sarrafzadeh, “Variable Voltage Scheduling”, International Symposium on Low Power Electronics and Design, pp. 9 - 14, 1995.
[16] W. Zhao and Y. Cao, “Predictive Technology Model for Nano-CMOS Design Exploration”, ACM Journal on Emerging Technologies in Computing Systems (JETC), Volume 3, Issue 1, pp. 1-5, Apr. 2007.
[17] W. Zhao and Y. Cao, “New Generation of Predictive Technology Model for Sub-45nm Design Exploration”, International Symposium on Quality Electronic Design, pp. 1-6, 2006.
[18] C.H. Kim and K. Roy, “Dynamic VTH Scaling Scheme for Active Leakage Power Reduction”, IEEE proceeding of Design, Automation and Test in Europe Conference and Exhibition, pp. 163 - 167, 2002.
[19] L. Wei et al. “Design and Optimization of Dual-Threshold Circuits for Low-Voltage Low-Power Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 1, pp. 16 - 24, Mar, 1999.
[20] X. Tang et al. “Leakage Power Optimization with Dual-Vth Library In High-Level Synthesis”, Design Automation Conference, pp. 202 - 207, Jun. 2005.
[21] M. Ekpanyapong et al. “Integrated Retiming and Simultaneous Vdd/Vth Scaling for Total Power Minimization”, Proceedings of international symposium on Physical design, pp. 142 - 148, Apr. 2006.
[22] Cadence / TSMC reference flow 6.0. 2005 http://www.tsmc.com/chinese/c_services/c01_design/c0106_reference.htm
[23] G.E. Moore, “No exponential is forever: but "Forever" can be delayed! [semiconductor industry]”, digest of technical papers, International Solid State Circuits Conference, pp. 20 - 23, 2003.
[24] Galaxy Design Platform Multi-voltage Design,
http://www.synopsys.com/products/power/multivoltage_bkgrd.pdf
Synopsys, Aug. 2005.
[25] Neil H.E. Weste and David Harris, “CMOS VLSI DESIGN A Circuits and Systems Perspective”, 3rd, Addison Wesley, pp. 190, 2005.
[26] Douglus B. West, “Introduction to Graph Theory”, 2nd, pp. 55, 2001
[27] Jui-Ming Chang and Massoud Pedram, “Energy Minimization Using Multiple Supply Voltage”, IEEE Transaction On Very Large Scale Integration (VLSI) Systems, Vol. 5, No. 4, pp. 436 - 443, Dec. 1997.
[28] Predictive Technology Model, http://www.eas.asu.edu/~ptm/