| 研究生: |
陳清木 Chen, Qing-Mu |
|---|---|
| 論文名稱: |
具高轉換比之三埠轉換器 Three-Port Converter With High Voltage Gain |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 三埠轉換器 、高轉換比 、耦合電感 |
| 外文關鍵詞: | Three-port converter, high conversion ratio, coupled-inductor |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具高升壓比之三埠轉換器,其使用耦合電感、電壓疊加技術及交換電容技術達到高升壓功能,架構由升壓、升壓-返馳式轉換器和降壓轉換器構成三埠轉換器。本論文首先將介紹與分析三埠轉換器及高升壓比電路之特性與動作原理,其中三埠轉換器具四種動作模式: 輸入對輸出之單輸入單輸出模式(SISO I)、電池對輸出之單輸入單輸出模式(SISO II)、雙輸入單輸出模式(DISO)及單輸入雙輸出模式(SIDO)。接著分析本論文所提出架構之動作原理與穩態分析,實作一輸入電壓埠200 V、電池埠48V、高輸出埠400 V及額定功率為500 W的實驗雛型以驗證論文的理論分析,並進行主要元件之設計。其四種動作模式效率皆可達91%以上,SISO I、SISO II、DISO和SIDO之最高效率分別可達93.3%、92.3%、93%和91%。
A three-port converter with high voltage gain is proposed in this thesis. The high voltage gain can be achieved in the proposed converter with coupled-inductor, voltage superposition technique and switched capacitor technique. The proposed three-port converter is constructed with boost, boost-flyback converter and a buck converter. First, the characteristics and operating principles of proposed converter are introduced in this thesis which include four operating stages: single input single output I (SISO I) stage, single input single output II (SISO II) stage, dual input single output (DISO) stage and single input dual output (SIDO) stage. Next, the operating principle of the proposed topology analyzed. Finally, the digital signal controller TMS320F28335 is used as a switch controller to implement a set of 500 W experimental prototype with input voltage ports 200 V, battery ports 48 V, and high voltage output ports 400 V to verify the principle analysis of this thesis and the design process of the proposed converter are discussed. The efficiency of four operating stages are higher than 91%. The maximum efficiency of SISO I stage、SISO II stage、DISO stage and SIDO stage can reach 93.3%, 92.3%, 93% and 91%, respectively.
[1] S. Saito, “Role of nuclear energy to a future society of shortage of energy sources and global warming,”Journal of Nuclear Materials, vol. 398, pp. 1-9, 2010.
[2] J. Jiang, A. Blank, F. Maier, A. Bharthepudi, and P. Kumar, “Financial analysis and comparison of compact electric and gasoline cars,” in Proc. IEEE Int. Conf. on PICMET, 2015.
[3] C. Alaoui, “Solid-state thermal management for lithium-ion ev batteries,” in IEEE TVT, vol. 62, no. 1, pp. 98-107, Jan. 2013.
[4] M. A. Hannan, Md. M. Hoque, S. E. Peng, and M. N. Uddin, “Lithium-ion battery charge equalization algorithm for electric vehicle applications,” in IEEE Trans. on IAS, vol. 53, no. 3, pp. 2541-2549, May-Jun. 2017.
[5] H. Li, M. Alsolami, S. Yang, Y. M. Alsmadi, and J. Wang, “Lifetime test design for second-use electric vehicle batteries in residential applications,” in IEEE Trans. on Sustainable Energy, vol. 8, no. 4, pp. 1736-1746, Oct. 2017.
[6] H. Tao, J. L. Duarte, and M. A. M. Hendrix, "Multiport converters for hybrid power sources," in Proc. IEEE Power Electron. Spec. Conf., Jun. 2008.
[7] K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "A distributed control strategy based on dc bus signaling for modular photovoltaic generation system with battery energy storage," IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032-3045, Oct. 2011.
[8] K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "Bifurcation analysis of standalone photovoltaic-battery hybrid power system," IEEE Trans. Circuits and Systems, vol. 60, no. 5, pp. 1354-1365, Apr. 2013.
[9] D. Liu and H. Li, "A ZVS bi-directional dc-dc converter for multiple energy storage elements," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513-1517, Sep. 2006.
[10] Y. M. Chen, Y. C. Liu, and F. Y. Wu, "Multi-input dc/dc converter based on the multiwinding transformer for renewable energy applications," IEEE Trans. Ind. Applications., vol. 38, no. 4, pp. 1096-1104, Jul. 2002.
[11] J. L. Durate, M. Hendrix, and M. G. Simoes, "Three-port bidirectional converter for hybrid fuel cell system," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480-487, Mar. 2007.
[12] C. Zhao, S. D. Round, and J. W. Kolar, "An isolated three-port bidirectional dc-dc converter with decoupled power flow management," IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, Sep. 2008.
[13] H. Tao, J. L. Duarte, and M. A. M. Hendrix, "Three-port triple-half-bridge bidirectional converter with zero-voltage switching," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 782-792, Mar. 2008.
[14] H. Krishnaswami and N. Mohan, "Constant switching frequency series resonant three-port bi-directional dc-dc converter," in Power Electron. Spec. Conf., 2008.
[15] K. Haribaran and N. Mohan, "Three-port series-resonant dc-dc converter to interface renewable energy sources with bidirectional load and energy storage ports," IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289-2297, Oct. 2009.
[16] Z. Zhang, O. C. Thomsen, M. A. E. Anderson, and H. R. Nielsen, "Dual-input isolated full-bridge boost dc–dc converter based on the distributed transformers," IET Power Electron., vol. 5, no. 7, pp. 1074-1083, Aug. 2012.
[17] Z. Qian, O. Abdel-Rahman, H. Al-Atrash, and I. Batarseh, "Modeling and control of three-port DC/DC converter interface for satellite applications," IEEE Trans. Power Electron., vol. 25, no. 3, pp. 637-649, Mar. 2010.
[18] Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "Multi-channel three-port DC/DC converters as maximum power tracker, battery charger and bus regulator," in Applied Power Electron. Conf. APEC, Feb. 2010.
[19] F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, "A new zvs bidirectional dc-dc converter for fuel cell and battery application," IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54-65, Jan. 2004.
[20] Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "An intergraded four-port dc-dc converter for renewable energy applications," IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877-1887, Jul. 2010.
[21] H. Wu, R. Chen, J. Zhang, Y. Xing, H. Hu, and H. Ge, "A family of three-port half- bridge converters for a stand-alone renewable power system," IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2697-2706, Sep. 2011.
[22] A. Hussam, F. Tian, and I. Batarseh, "Tri-modal half-bridge converter topology for three-port interface," IEEE Trans. Power Electron., vol. 22, no. 1, pp. 341-345, Jan. 2007.
[23] H. Al-Atrash, M. Pepper, and I. Batarseh, "A zero-voltage switching three-port isolated full-bridge Converter," in Telecoms. Energy Conf., Sep. 2006.
[24] A. Di Napoli, F. Crescimbini, S. Rodo, and L. Solero, "Multiple input dc-dc power converter for fuel-cell powered hybrid vehicles," IEEE Power Electron. PESC, vol. 4, pp 1685-1690, Jun. 2002.
[25] Y. C. Liu and Y. M. Chen, "A systematic approach to synthesizing multi-input dc-dc converters," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 116-127, Jan. 2009.
[26] R. J. Wai, C. Y. Lin, and Y. R. Chang, "High step-up bidirectional isolated converter with two input power source," IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2629- 2643, Jul. 2009.
[27] N. Vazquez, C. M. Sanchez, C. Hernandez, E. Vazquez, and R. Lesso, "A three port converter for renewable energy applications," IEEE International Symposium. ISIE, Jun. 2011.
[28] S. H. Hosseini, S. Danyali, and S. A. K. M. N. F. Nejabatkhah, "Modeling and control of a new three-input dc-dc boost converter for hybrid PV/FC/battery power system," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309-2324, May. 2012.
[29] H. Wu, K. Sun, S. Ding, and Y. Xing, "Topology derivation of non-isolated three- port dc-dc converter from DIC and DOC," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3297-3307, Jul. 2013.
[30] S. H. Hosseini, S. Danyali, and S. A. K. M. N. F. Nejabatkhah, "Multi-input dc boost converter for grid connected hybrid PV/FC/battery power system," Electric Power and Energy Conf. EPEC, Aug. 2010.
[31] Q. Wang, J. Zhang, X. Ruan, and K. Jin, "Isolated single primary winding multiple- input converters," IEEE Trans. Power Eletcrion., vol. 26, no. 12, pp. 3435-3442, Dec. 2011.
[32] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "A novel high step-up dc-dc converter for a microgrid system," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127-1136, Apr. 2011.
[33] F. L. Luo, "Six self-lift dc-dc converters, voltage lift technique," IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2011.
[34] F. L. Luo and H. Ye, "Positive output super-lift converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan 2003.
[35] Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
[36] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan 2008.
[37] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A new design method for high-power high-efficiency switched-capacitor dc-dc converters," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
[38] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit," IEEE Trans. Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[39] K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar 2004.
[40] K. C. Tseng and T. J. Liang, "Analysis of intergrated boost-flyback step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 152, no. 2, pp. 217-225, Mar. 2005.
[41] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "Novel high step-up dc-dc converter for distributed generation system," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1473-1482, Apr. 2013.
[42] L. Palma, M. H. Todorovic, and P. Enjeti, “A high gain transformer-less dc-dc converter for fuel-cell applications,” in Proc. IEEE PESC, pp. 2514-2520, 2005.
[43] R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor," IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, Nov. 2005.
[44] B. Gu, J. Dominic, J. S. Lai, Z. Zhao, and C. Liu, "High boost ratio hybrid transformer dc-dc converter for photovoltaic module applications," in Applied Power Electron. Conf. APEC, Feb. 2012.
[45] Y. M. Chen, A.Q Huang and X. Yu, " High step-up three-port dc–dc converter for stand-alone pv/battery power systems," IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5049-5062, Nov. 2013.
[46] Ferroxcube, “3C90 material specification,” Preliminary Datasheet, Sep. 2008.
[47] Li-Jhan Chien, Chien-Chih Chen, Jiann-Fuh Chen, and Yi-Ping Hsieh, "Novel three-port converter with high-voltage gain," IEEE Trans. Power Electron., vol. 29 no. 9 pp. 4693-4703, Sept. 2014
校內:2025-08-31公開