簡易檢索 / 詳目顯示

研究生: 程弘毅
Chen, Hung-I
論文名稱: 應用於不連續導通模式單開關三相升壓整流器之適應性諧波注入機制
Adaptive Harmonic Injection Mechanism for Single-Switch Three-Phase DCM Boost Rectifier
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 94
中文關鍵詞: 功率因數修正電路升壓轉換器不連續導通模式寬輸出電壓適應性諧波注入機制
外文關鍵詞: Power Factor Correction, Boost Converter, Discontinuous Conduction Mode, Wide Output Voltage, Adaptive Harmonic Injection
相關次數: 點閱:106下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一具適應性諧波注入機制之不連續導通模式的單開關三相升壓整流器,可提供寬範圍的直流輸出電壓給電源系統,如脈波調變控制的變頻器與不間斷電源供應器。
    此外,不連續導通模式之單開關三相升壓整流器於定頻控制之下,其三相輸入電流含有相對較高的五次諧波成分,致使轉換器之輸入電流總諧波失真嚴重。在固定的電壓轉換比之下,傳統的諧波注入機制可藉由注入固定的六倍頻諧波訊號,降低整流器輸入電流的五次諧波。然而,注入固定的六倍頻諧波訊號,無法有效改善轉換器操作在不同電壓轉換比之下的五次諧波失真。
    因此,本論文提出一具適應性諧波注入機制,係根據所偵測的輸入與輸出電壓值,來改變所注入的六倍頻諧波訊號大小,使轉換器操作在不同電壓轉換比之下,有效降低其輸入電流的五次諧波成分,改善總諧波失真。
    最後,實作一1kW雛型電路,進行總成測試,量測輸入電流諧波成份與輸入端功率因數,驗證本論文所提出之具適應性諧波注入機制,即使在寬輸出電壓範圍下,亦可有效改善輸入電流諧波成分,符合IEC61000-3-2 Class A 規範。

    This thesis presents an adaptive harmonic injection mechanism for the single-switch three-phase discontinuous Conduction Mode (DCM) boost rectifier to provide a wide output voltage for the power systems, such as pulse amplitude modulation (PAM) inverters and uninterruptible power supply (UPS) systems.
    Furthermore, the line currents of the single-switch three-phase DCM boost rectifier with constant frequency control contain relatively large fifth-order harmonic, to result in high total harmonic distortion (THD). The conventional harmonic injection mechanism is developed for the reduction of the fifth-order harmonic by injecting a constant sextuple harmonic signal to modulate the duty cycle at the fixed voltage-conversion ratio. However, the amplitude of the injected sextuple harmonic signal needs to be varied according to different line voltages and output voltages. Therefore, an adaptive harmonic injection mechanism is proposed to vary the amplitude of the injected sextuple harmonic signal according to the sensed different line voltages and output voltages for lowest THD.
    Finally, a 1kW prototype circuit of the proposed adaptive harmonic injection mechanism for the single-switch three-phase DCM boost rectifier is designed and implemented to verify the input power factor correction (PFC) and line current harmonic for the fulfillment of IEC61000-3-2 Class A standard at wide output voltages.

    CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.2. Motivation 5 1.3. Thesis Outline 6 CHAPTER 2. THREE-PHASE POWER FACTOR CORRECTION TOPOLOGIES 7 2.1. Introduction 7 2.2. Conventional Six-switch Three-phase CCM Boost Rectifier 7 2.3. Conventional Single-switch Three-phase DCM Boost Rectifier 9 2.3.1. Operational Principles 10 2.3.2. Line Current Equation 16 2.3.3. Line Current Harmonic Analysis 17 2.4. Single-switch Three-phase DCM Boost Rectifier with Harmonic Injection Mechanism 19 2.4.1. Conventional Harmonic Injection Mechanism 20 2.4.2. Constant Sextuple Harmonic Signal 21 2.4.3. Duty Cycle Modulation 21 2.5. Summary 24 CHAPTER 3. PROPOSED ADAPTIVE HARMONIC INJECTION MECHANISM FOR SINGLE-SWITCH THREE-PHASE DCM BOOST RECTIFIER 25 3.1. Introduction 25 3.2. Theoretical Modulation Function for Lowest THD 25 3.3. Proposed Curve-fitting Function 28 3.4. Deviation Equation of THDs between Theoretical Modulation Function and Curve-fitting Function 32 3.5. Proposed Adaptive Harmonic Injection Mechanism 36 3.6. Summary 39 CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 40 4.1. Introduction 40 4.2. Implementation of Proposed Adaptive Harmonic Injection Mechanism for Single-switch Three-Phase DCM Boost Rectifier 40 4.2.1. Prototype Circuit of Single-switch Three-phase DCM Boost Rectifier with Adaptive Harmonic Injection Mechanism 40 4.2.2. Design of Proposed Adaptive Harmonic Injection Mechanism 42 4.2.3. Component Parameters of Prototype Circuit 44 4.3. Experimental Results 46 4.3.1. Experimental Results at Line Voltage Vline=181V 46 4.3.2. Experimental Results at Line Voltage Vline=190V 48 4.3.3. Experimental Results at Line Voltage Vline=200V 50 4.4. Summary 52 CHAPTER 5. CONCLUSIONS 53 REFERENCES 56

    [1] Yiqing Zhao, Single phase power factor correction circuit with wide output voltage range, Master's thesis, Blacksburg, Virginia, 1998.
    [2] Firuz Zare, “Harmonics issues of three-phase diode rectifiers with a small DC link capacitor,” Power Electronics and Motion Control Conference and Exposition (PEMC), Antalya, Sept. 21-24, 2014, pp. 912-917.
    [3] A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del, vol. 16, no. 4, Oct. 2001, pp. 782-790.
    [4] F. S. dos Reis, K. Tan, and S. Islam, “Using PFC for harmonic mitigation in wind turbine energy conversion systems,” in Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., Busan, Korea, Nov. 2-6, 2004, pp. 3100-3105.
    [5] Y. Jiang, H. Mao, F. C. Lee, and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 1994, pp. 1158-1163.
    [6] G. Chen and K. Smedley, “Steady-state and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, Apr. 2005.
    [7] C. Qiao and K. M. Smedley, “Unified constant-frequency integration control of three-phase standard bridge boost rectifiers with power-factor correction,” IEEE Trans. Ind. Electron., vol. 50, no. 1, pp. 100-107, Feb. 2003.
    [8] H. Mao, D. Boroyevich, and F. C. Lee, “Analysis and design of high frequency three-phase boost rectifiers,” in Proc. IEEE APEC’96, vol. 2, San Jose, CA, Mar. 3-7, 1996, pp. 538-544.
    [9] D. Yazdani, A. R. Bakhshai, and P. Jain, “A simple and efficient control strategy for three-phase boost rectifiers,” in Proc. Canadian Conf. Electrical and Computer Engineering, vol. 1, May 2003, pp. 409-412.
    [10] H. Mao, F. C. Lee, D. Borojevieh, and S. Hiti, “Review of high-performance three-phase power-factor correction circuit,” IEEE Trans. lnd. Electron., vo1.44, no.4, pp. 437-446, Aug. 1997.
    [11] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, Jun. 2004.
    [12] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 83-92, Jan. 1991.
    [13] Kai Yao, Xinbo Ruan, Chi Zou, and Zhihong Ye, “Three-Phase Single-Switch Boost PFC Converter with High Input Power Factor,” 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, Sept. 12-16, 2010, pp. 2921-2928.
    [14] Y. Jang and M.M. Jovanovic, “A comparative study of single-switch three phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, Nov./Dec. 1998.
    [15] Q. Huang and F. C. Lee, “Harmonic reduction in a single-switch, three-phase boost rectifier with high order harmonic injected PWM,” in Proc. IEEE Power Electron. Specialists’ Conf. (PESC) Rec., Jun. 1996, vol. 2, pp. 1266-1271.
    [16] J. W. Kolar, H. Ertl, and F. C. Zach, “Space vector-based analytical analysis of the input current distortion of a three-phase discontinuous-mode boost rectifier system,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 733-745, Nov. 1995.
    [17] Y. Jang and M. M. Jovanovic, “A novel, robust, harmonic injection method for single-switch, three-phase, discontinuous-conduction-mode boost rectifiers,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 824-834, Sep. 1998.
    [18] D. S. L. Simonetti, J. L. F. Vieira and G. C. D. Sousa, “Modeling of the high-power factor discontinuous boost rectifier,” IEEE Trans. Ind. Electron., vol. 46, no. 4, pp. 788-795, Aug. 1999.
    [19] E. H. Ismail and R. Erickson, “Single-switch 3φ PWM low harmonic rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 338-346, Mar. 1996.
    [20] J. Sun, N. Frohleke, and H. Grotstollen, “Harmonic reduction techniques for single-switch three-phase boost rectifiers,” in Proc. IEEE IAS Annu. Meet. Rec., Oct. 1996, vol. 2, pp. 1225-1232.
    [21] K. Schenk and S. Cuk, “A simple three-phase power factor corrector with improved harmonic distortion,” in Proc. IEEE PESC’97, 1997, pp. 399-405.
    [22] D. S. L. Simonetti, J. L. F. Viera, and G. C. D. Sousa, “Modeling of the high-power-factor discontinuous boost rectifiers,” IEEE Trans. Ind. Electron, vol. 46, no. 4, Aug. 1999, pp. 788-795.

    無法下載圖示 校內:2021-11-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE