| 研究生: |
許哲維 Hsu, Che-Wei |
|---|---|
| 論文名稱: |
地工設計參數不確定性對大口徑單樁基礎穩定性影響研究 Effects of geotechnical parameters uncertainties on monopile foundation stability |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 離岸風機大口徑單樁基礎 、標準貫入試驗機率分布 、Plaxis自動化計算 |
| 外文關鍵詞: | Offshore wind, Soil Uncertainties, Probability Density Function of SPT-N, PLAXIS automatically program, Risk assemble of offshore wind turbine foundation |
| 相關次數: | 點閱:156 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國近期積極開發離岸風力發電,目前商轉之離岸風機多以大口徑單樁為主要支撐結構。於開發前期,開發商一般僅對海床土壤進行少量鑽探作業,因此,進行基礎概念設計時,須考量地工設計參數不確定性對大口徑單樁基礎穩定性的影響。
本研究以蒙地卡羅法考量土壤參數不確定性對大口徑單樁結構的影響,以Peck(1953)工程土壤分類方法,依標準灌入試驗SPT-N值,將現有公開之離岸風場鑽探資料分類為16種工程土壤,由統計方法(包含K-S test、Q-Q plot及直方圖)判斷各土壤種類適用之機率密度函數,依照不同的機率密度函數的條件,生成多筆亂數模擬土壤參數之變異性。經由建立SPT-N與地工參數之推估關係式,給定土壤強度參數,完成地工參數隨機給定模型。本研究參考黃昱睿(2018)建立離岸風機大口徑單樁基礎有限元素數值模型之方法,由地工設計參數隨機給定模型給予數值模型土壤強度參數,分析一千組隨機案例。為縮短分析時間及減少人力成本,本研究建立樁土互致行為自動化分析模組,此模組可由地工參數隨機給定模型中之材料組合,更新數值模型中的土壤地工設計參數。樁土互致行為自動化分析模組可自動化計算更新材料參數後的數值模型,並儲存檔案。計算完預定分析組數後,可自動輸出大口徑單樁基礎之樁頭位移量,並且計算各分析案例之樁身旋轉角。本研究除了以蒙地卡羅法分析地工設計參數不確定性對大口徑單樁基礎之穩定性影響外,同時計算各工程土壤之標準灌入試驗SPT-N特徵值,定義各工程土壤SPT-N之上下限,於給定地工設計參數上下限的條件下,進行大口徑單樁基礎受力變形反應定量分析,作為與地工參數隨機給定模型分析大口徑單樁基礎穩定性之成果比對參考。
於本研究給定之案例分析條件下(基樁8m,樁長50m),參考風場各類工程土壤SPT-N的變異係數為20%-50%,而經由基樁受力變型行為自動化分析後,其樁頭變形量之變異係數為3%,且樁頭旋轉角皆低於DNV. GL(2016)建議之SLS設計條件的0.25°。此外,樁頭位移量超出上下限的案例發生機率落在0.32%及0.84%,即超出本研究定義之上下限案例的發生機率極低,顯示給定之案例分析條件大口徑單樁基礎設計尺寸較為保守。
It’s important to grasp the soil properties in the beginning of offshore windturbine development. Before the windturbine design and construction, developers can only assemble the risk of the development though the limit borehole data. They will face the problem of the soil uncertainty. In order to deal with the soil uncertainties, in this research, use statistic method to test the probability distribution of Standard Penetration test value (SPT-N). Simulate the soil uncertainties though Monte Carlo Method and following the engineering soil type PDF create the random database for SPT-N. PLAXIS 3D numerical model is used to analysis the behaved of the monopole foundation in the study. To analysis the effect of the monopile foundation stability under the soil uncertainties condition, this study create the auto PLAXIS program through PYTHON. This program can automatically update the soil strength parameter, which is created in random database, for each numerical model case. It can save large time and work for the whole case study. The case study result show that the variance of the monopile deformation is not signification as considering the soil uncertainties through modifying the soil strength parameters. In the future study, it can consider the soil deformation parameter to simulate the soil more reality.
參考文獻
Baecher, G. B., and Christian, J. T. (2005). “Reliability and statistics in eotechnical engineering.” John Wiley and Sons.
Beekmann, M., and Derognat, C. (2003). “Monte Carlo uncertainty analysis of a regional‐scale transport chemistry model constrained by measurements from the atmospheric pollution over the Paris area (ESQUIF) campaign.” Journal of Geophysical Research: Atmospheres, 108(D17).
Beck, J. L., and Au, S. K. (2002). “Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation.” Journal of engineering mechanics, 128(4), 380-391.
Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., and Moss, R. E. (2004). “Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential.” Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-1340.
Cox, M. G., and Siebert, B. R. (2006). “The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty.” Metrologia, 43(4), S178.
Depina, I., Le, T. M. H., Eiksund, G., and Benz, T. (2015).” Behavior of cyclically loaded monopile foundations for offshore wind turbines in heterogeneous sands.” Computers and Geotechnics, 65, 266-277.
DNV, G. (2016). “DNVGL-ST-0126 Support structures for wind turbines.” Appendix F pile resistance and load–displacement relationships. Bærum, Norway: DNV GL.
Firestone, M., Fenner-Crisp, P., Barry, T., Bennett, D., Chang, S., Callahan, M., ... and Barnes, D. (1997). “Guiding principles for Monte Carlo analysis.” Washington, DC: US Environmental Protection Agency.
Frank, R. (2004). “Designers' guide to EN 1997-1 Eurocode 7: Geotechnical design-General rules.” Thomas Telford.
Hanna, S. R., Chang, J. C., and Fernau, M. E. (1998). “Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables.” Atmospheric Environment, 32(21), 3619- 3628.
Hatanaka, M., and Uchida, A. (1996). “Empirical correlation between penetration resistance and internal friction angle of sandy soils.” Soils and Foundations, 36(4), 1-9.
Honjo, Y. (2011). “Challenges in geotechnical reliability based design.” In Proc. of the 3 rd International Symposium on Geotechnical Safety and Risk.–Germany: Munich, 2011.–Р. 11(Vol. 27).
Japan Road Association(1990). “Part V Seismic design, Design specifications of highway bridges.” Maruzen, Tokyo, Japan.
Jefferies, M. G., Rogers, B. T., Griffin, K. M., and Been, K. (1989). “Characterization of sandfills with the cone penetration test.” In Penetration testing in the UK: Proceedings of the geotechnology conference organized by the Institution of Civil Engineers and held in Birmingham on 6–8 July 1988. Thomas Telford Publishing. 199-202.
Jiang, S. H., Li, D. Q., Cao, Z. J., Zhou, C. B., and Phoon, K. K. (2014). “Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation.” Journal of Geotechnical and Geoenvironmenta Engineering, 141(2), 04014096.
Juang, C. H., Ching, J., and Luo, Z. (2013). “Assessing SPT-based probabilistic models for liquefaction potential evaluation: a 10-year update.” Georisk: Assessment and management of risk for engineered systems and geohazards, 7(3), 137-150.
Kottegoda, N., and Rosso, R. (2000). “Statistics, probability and reliability for civil and environmental engineers.”
Lacasse, S.,and Nadim, F. (1996, July). “Uncertainties in characterising soil properties.” In Uncertainty in the geologic environment: From theory to practice (pp. 49-75). ASCE.
Lilliefors, H. W. (1967). “On the Kolmogorov-Smirnov test for normality with mean and variance unknown.” Journal of the American statistical Association, 62(318), 399-402.
Lumb, P. (1966). “The variability of natural soils.” Canadian Geotechnical Journal, 3(2), 74-97.
Nilsen, T., and Aven, T. (2003). “Models and model uncertainty in the context of risk analysis.” Reliability Engineering and System Safety, 79(3), 309-317.
Magner, K., Maerz, N., Guardiola, I., and Aqeel, A. (2017). “Determining optimum number of geotechnical testing samples using Monte Carlo simulations.” Arabian Journal of Geosciences, 10(18), 406.
Mahdiyar, A., Hasanipanah, M., Armaghani, D. J., Gordan, B., Abdullah, A., Arab, H., and Majid, M. Z. A. (2017). “A Monte Carlo technique in safety assessment of slope under seismic condition.” Engineering with Computers, 33(4), 807-817.
Muduli, P. K., and Das, S. K. (2015). “Model uncertainty of SPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming.” Soils and Foundations, 55(2), 258-275.
Murphy, W., Petley, D. N., Bommer, J., and Mankelow, J. M. (2002). “Uncertainty in ground motion estimates for the evaluation of slope stability during earthquakes.” Quarterly Journal of Engineering Geology and Hydrogeology, 35(1), 71-78.
Peck, R. B., Hanson, W. E., and Thornburn, T. H. (1953). “Foundation Engineering, Lww.”
Phoon, K. K., and Kulhawy, F. H. (1999). “Characterization of geotechnical variability.” Canadian Geotechnical Journal, 36(4), 612-624.
Reimann, C., and Filzmoser, P. (2000). “Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data.” Environmental geology, 39(9), 1001-1014.
Raghu Kanth, S. T. G., & Dash, S. K. (2008). “Stochastic Modeling of SPT N-Value and Evaluation of Probability of Liquefaction at Guwahati City.” Journal of Earthquake and Tsunami, 2(03), 175-196.
Schmertmann, J. H. (1975). “Measurement of in situ shear strength” SOA Report. In Proceedings, ASCE Spec. Conference on In Situ Measurement of Soil Properties, Raleigh, NC, 1975, 2, 57-138.
Sett, K., Unutmaz, B., Çetin, K. Ö., Koprivica, S., and Jeremić, B. (2010). “Soil uncertainty and its influence on simulated G/G max and damping behavior.” Journal of Geotechnical and Geoenvironmental Engineering,” 137(3), 218-226.
Sivrikaya, O., and Toğrol, E. (2002). “Relations between SPT-N and qu.” In 5th international congress on advances in civil engineering, Istanbul, 943-952.
Sonnemann, G. W., Schuhmacher, M., and Castells, F. (2003). “Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator.” Journal of Cleaner Production, 11(3), 279-292.
Sowers, G. F. (1979). “Soil mechanics and foundations: geotechnical engineering.”
Stroud, M. A. (1974). “The standard penetration test in insensitive clays and soft rocks.” In Proceedings of the 1st European Symposium on Penetration Testing, Stockholm, Sweden, 2(2), 367-375.
Sturges, H. A. (1926). “The choice of a class interval.” Journal of the american statistical association, 21(153), 65-66.
Teixeira, A., Correia, A. G., Honjo, Y., and Henriques, A. (2011, December). “Reliability analysis of a pile foundation in a residual soil: contribution of theuncertainties involved and partial factors.” In Proceedings.
Terzaghi, K. and Peck, R.B. (1967) “Soil Mechanics in Engineering Practice,” John Wiley, NewYork.
Veritas, D. N. (2012). “DNV-RP-C207: Statistical Representation of Soil Data.” Det Norske Veritas.
Wang, Y., Cao, Z., and Au, S. K. (2010). “Efficient Monte Carlo simulation of parameter sensitivity in probabilistic slope stability analysis.” Computers and Geotechnics, 37(7-8), 1015-1022.
Wang, Y., Cao, Z. J. (2013), “Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations.” Solis and Foundations, 53(6), 820-834.
Wang, Y., and Cao, Z. (2013). “Probabilistic characterization of Young's modulus of soil using equivalent samples.” Engineering Geology, 159, 106-118.
Wang, Y., Zhao, T., and Cao, Z. (2015). “Determination of soil property characteristic values from standard penetration tests.”
Whitman, R. V. (1984). “Evaluating calculated risk in geotechnical engineering.” Journal of Geotechnical Engineering, 110(2), 143-188.
Wolff, T. F. (1989). “Geotechnical Judgment in Foundation Design.” In Foundation Engineering: Current Principles and Practices, ASCE, 903-917.
Yasuda, S., Harada, K., Ishikawa, K., and Kanemaru, Y. (2012). “Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan earthquake.” Soils and Foundations, 52(5), 793-810.
Zhang, J., Zhang, L. M., and Tang, W. H. (2009). “Bayesian framework for characterizing geotechnical model uncertainty.” Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 932-940.
郭玉樹、王昱凱、曾韋禎、許博凱(2014),「離岸風機基礎設計與驗證考量」,地工技術,第142期
郭玉樹(2016),「離岸風電海域大地工程技術-設計地震力反應譜對離岸風機基礎設計之影響」,工程,86卷,02期,39-51。
郭玉樹(2017),「離岸風機基礎穩定性風險評估(1/2)」,成果報告。
簡連貴、邱淑宜、馮宗緯、林俶寬(2014),「離岸風力發電計畫海域大地工程調查~以福海離岸風電為例」,地工技術,142期,2014年12月號。
張倖偉(2017),「彰濱外海離岸風場地工模型雛形建立」,碩士論文,國立成功大學水利所,臺南。
黃昱睿(2018),「大口徑單樁基礎受側向力作用之穩定性分析」,碩士論文,國立成功大學水利所,臺南。
台灣電力股份有限公司(2009),「彰濱離岸風力發電計畫可行性研究」
台灣電力股份有限公司(2009),「離岸風力發電第一期計畫」。
台灣海洋科技研究中心(2012),「彰濱海欲地質鑽探試驗分析工作報告書」。
海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(27號風場)環境影響說明書」
海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(28號風場)環境影響說明書」
中能發電股份有限公司(2017),「中能離岸風力發電開發計畫環境影響說明書」。
校內:2028-12-31公開