簡易檢索 / 詳目顯示

研究生: 林紘昱
Lin, Hong-Yu
論文名稱: 人工植體設計對生物力學影響之有限元素分析
Finite Element Analysis for the Effect of Dental Implant Designs on Biomechanics
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 173
中文關鍵詞: 人工植牙系統有限元素法應答曲面法過渡層骨整合
外文關鍵詞: Dental implant system, finite element method, response surface method, trasitional layers, Osseointegration
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用有限元素法對人工植牙系統(Dental implant system)進行生物力學的分析。而人工牙冠的CAD(Computer-Aided Design)是採用微斷層掃描,再搭配立體圖層建立實體,產生出接近自然牙的人工牙冠。鈦金屬螺紋植體、植體的氫氧基磷灰石(Hydroxyapatite,HA)表面塗層和雙骨質黏彈性複合材料的皮質骨與海綿骨則是利用專業繪圖軟體-Solidworks繪製出CAD模型。
    植牙成功與否在於人工牙冠受力傳遞至齒槽骨後,其應變量是否能達到齒槽骨的容許範圍,且讓皮質骨的應力和海綿骨的應變內能快速均勻地散出,以增加植體的穩定性和植牙的成功率。
    對於這些目標,利用田口方法及變異數分析搭配應答曲面法來改變人工植體的大小和更細部的螺紋形狀與尺寸來達成皮質骨的應力和海綿骨應變內能能夠均勻快速地分散。並在人工植體外圍添加一層與骨組織材質相仿的氫氧基磷灰石材料塗層,使得整體人工植牙系統在生物機械性質上更貼近自然牙的受力行為模式,且更快達到人工植體與齒槽骨之間骨整合(Osseointegration)的效應。
    在皮質骨和海綿骨的交界帶,由於齒槽骨為雙骨質的黏彈性複合材料,且雙骨質的材料性質差異過大,以至於整個受力的過程當中,會因為這個差異性,阻隔了應力和能量的傳遞。為了達到皮質骨與海綿骨之間的複合性質且使得應力和能量能夠在短時間內快速地傳遞,特別在網格劃分和設定上增加了過渡層(Transitional layers)並搭配適合的漸進函數來描述雙骨質複合材料在受力過程的物理現象。
    最後藉由改變人工植牙系統的各個可變參數與利用變異數分析與曲面應答法決定影響最顯著的參數,再利用這些參數不同的配置下,找出對於影響皮質骨應力和海綿骨應變內能快速均勻分散的最佳配置。最終驗證其影響最顯著之參數能夠獲得最佳的目標結果,並利用此參數配置的結果來進行力學的分析,包括有無增設過渡層或增加其層數在力學上的差異與效用,甚至與人體自然牙所擁有的牙周膜韌帶相仿的矽膠超彈性材料來作比較,以致力於本研究之分析結果可以做為未來人工植牙系統在臨床上的參考與使用。

    This research is analysis of biomechanics on Dental implant system by using finite element method.While the artificial crown CAD (Computer-Aided Design) is using micro tomography, again with 3-D layers create artificial crown close to the natural teeth.Titanium implants of hydroxyapatite coating and double bone viscoelastic composite material of cortical bone and cancellous bone is the use of professional drawing software -Solidworks drawing CAD model.
    Implant success in artificial crown force transfer to the alveolar bone, the strain of whether it can reach the alveolar bone within the allowable range and make the stress of cortical bone and the strain energy of cancellous bone can quickly and uniformly disperse,to increase the stability of implants and implant success .
    For these target, using Taguchi's methods and ANOVA with response surface method to change the implant size and more detailed thread shape and size to make the stress of cortical bone and cancellous bone strain energy can disperse quickly.And in the implant surface coat a layer of hydroxyapatite like bone tissue,makes the whole implant system in biological mechanical properties closer to the natural tooth's stress behavior and faster toOsseointegration.between implant and alveolar bone.
    In the junction of cortical bone and cancellous bone, due to alveolar bone is a viscoelastic composite material of double bone,and the difference of cortical bone and cancellous bone material properties is too large,so that the whole loading process,because such that the difference between the barrier of stress and energy transfer between the alveolar bone. In order to achieve the composite property of cortical bone and cancellous bone and the stress and energy in a short period of time to quickly transfer,particularly in the meshing and setting increases the transitional layers and with progressive function to describe the double bone composite material in the process of force of the physical phenomena.
    Finally,by changing the implant system each variable parameters and using ANOVA and response surface method determines the most significant parameters, then use these parameters for different configuration,find out the best configuration for influence of cortical bone and cancellous bone stress strain can be rapidly and uniformly disperse.The final validation of the most significant influence of parameters can obtain the best objective results,and use this parameter configuration result to mechanics analysis,including differences and effectiveness of mechanics without adding trasitional layers or increase number of layers,and even have cpmparison of human natural teeth with periodontal ligament is similar to the silicone hyperelastic materials,in order to committed on the results of this research can be done for the future of Dental implant system in clinical reference and use.

    摘要 I Abstract III 致謝 VI 目錄 IX 表目錄 XIV 圖目錄 XV 符號表 XXVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 ANSYS/LS-DYNA之簡介與特色 5 1-4 顯性與隱性求解簡介 7 1-5 生物機械力學與植體之關係 9 1-5-1 受力形式 10 1-5-2 應力 10 1-5-3 應變 11 1-6 文獻回顧 11 第二章 人工植體選擇與骨質建立 15 2-1 植體之外型 16 2-1-1 植體幾何外型 17 2-1-2 植體長度 18 2-1-3 植體寬度 19 2-1-4 螺紋間距 19 2-1-5 螺紋面角 20 2-1-6 螺紋角曲率半徑與螺紋深度 20 2-2 植體表面處理與骨質 21 2-2-1 骨整合 21 2-2-2 植體表面處理-氫氧基磷灰石 22 2-2-3 雙骨質特性 23 2-2-4 骨吸收與骨萎縮 27 第三章 數值模擬設定與參數配置方法 33 3-1 人工植體數值模擬 33 3-1-1 數值模擬流程 33 3-1-2 材料性質之設定 33 3-1-3 界面之設定 34 3-2 有限元素模型網格化 37 3-3 邊界條件之設定 42 3-3-1 設定外力 42 3-3-2 固定及拘束條件之設定 43 3-4 參數之配置影響過程 44 3-4-1 評定參數的影響 44 3-4-2 田口方法 46 3-4-3 變異數分析 49 3-4-4 應答曲面法 51 第四章 結果與討論 64 4-1 田口方法之分析結果 65 4-1-1 等效應力全距在皮質骨之結果 65 4-1-2 體積應變內能在海綿骨之結果 67 4-1-3 等效應變在皮質骨和海綿骨上的分佈 69 4-2 皮質骨與海綿骨受力系統之影響因素討論 71 4-2-1 不同螺紋間距對皮質骨和海綿骨的影響 72 4-2-2 不同塗層厚度對皮質骨和海綿骨的影響 73 4-2-3 不同植體長度對海綿骨的影響 74 4-2-4 不同植體寬度對皮質骨的影響 75 4-3 參數配置影響之分析 76 4-3-1 變異數分析結果 76 4-3-2 應答曲面法之參數配置分析 80 4-3-3 驗證最佳化配置參數 82 4-4 雙骨質與不同塗層之力學分析 83 4-4-1 雙骨質複合材料之力學功用 83 4-4-2 過渡層不同層數之比較 89 4-4-3 不同材料塗層之比較 91 第五章 結論與未來展望 126 5-1 結論 126 5-2 未來展望 129 參考文獻: 133 附錄A:牙冠-臼齒CAD之建立 144 A-1 微斷層掃瞄 144 A-2 NRecon轉檔 145 A-3 Mimics影像疊合 146 A-4 Geomagic之實體建立 148 A-5 Solidworks的曲面檢查修改及結合 150 附錄B:ANSYS/LS-DYNA設定與後處理 158 B-1 ANSYS Workbench應用 158 B-1-1 材料庫設定 159 B-1-2 CAD模型輸入 160 B-1-3 模型設定 160 B-1-4 條件設定 161 B-2 不同材料接觸設定 161 B-2-1 骨整合 162 B-2-2 雙骨質交界帶 163 B-3 LS-PREPOST後處理分析 163

    [1]W.L. O'Roark, “Survival rate of dental implants: an individual practitioner's anecdotal review of 25 years of experience,” J Oral Implantol,vol.23,pp90-103(1997).
    [2]T.D. Taylor, “What is a dental implant?In:Peppers LG (eds) Dental implant:Are they for me?”Iowa:Quintessence,p6-7(1990).
    [3]V .Lertchurakarn, J.E. Palamara, H.H.Messer,“Anisotropy of tensile strength of root dentin,”J. Dent. Res, vol.80, pp453-456(2001).
    [4]k. Alemazdeh and D. Munch , Digital News, vol.3, pp28-33(2009).
    [5]Ash, Ramfjord. “Occlusion,” Fourth Edition. W. B. Saunders Company,Asia(2008).
    [6]S.G. Steinemann, “Titanium — the material of choice?”Periodontology 2000,vol.17, pp7-21(1998).
    [7]Heba Abuhussein, Giorgio Pagni, Alberto Rebaudi, Hom-Lay Wang,“The effect of thread pattern uponimplant osseointegration,” Clinical Oral Implants Research,vol.21,pp129-136(2010).
    [8]H.M. Frost,“Bone “mass” and the “mechanostat”: A proposal,” Anat Rec, vol.219, pp1-9(1987).
    [9]Donald T. Reilly, Albert H. Burstein,“The elastic and ultimate properties of compact bone tissue,” Journal of Biomechanics,vol.8,pp393-405(1975).
    [10] P.I. Branemark, U. Breine, R. Adell, B.O. Hansson “Scand J Plast Reconstr Surg”, vol.81(1969).
    [11]M. Esposito, J.M. Hirsch, U. Lekholm, P. Thomsen, “Biological factors contributing to failures of osseointegrated oral implant.(II).Etiopathogenesis,” Eur J Oral Sci,vol.721, pp721-764(1998).
    [12]W.T. Thomas,Prentice-Hall,New York,vol.221 (1995).
    [13]蔡國忠。“有限元素分析及工程應用:ANSYS Workbench”。知城出版。
    [14]陳申岳。“ANSYS有限元素法軟體:實務產品可靠度分析”。全華出版。
    [15]虎門科技 ANSYS/LS-DYNA 教育訓練手冊。
    [16]陳靖一。“ANSYS電腦輔助工程實務分析”。全華出版。
    [17]Leon Lapidus, George F.Pinder, “Numerical Solution of Partial Differential Equations in Science and Engineering”,Wiley and Sons, New York(1982).
    [17] A.L. Yettram and K.W. Wright, H.M. Pickard, “Finite element stress analysis of the crowns of normal and restored teeth,” J. Dent. Res., vol.55 , pp1004-1011(1976).
    [18] A.M.Weinstein, J.J. Klawitter, S.C. Anand, R. Schuessler, “Stress Anlysis of Porous Rooted Dental Implant,” Journal of dental research,vol.55, pp772-777(1976).
    [19]S. Tada, R. Steqaroiu, E. Kitamura, O. Miyakawa, H. Kusakari, “Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis,” Int J Oral Maxillofac Implants,vol.18, pp357-368(2003).
    [20]C.K. Chao, C.C. Hsiao,“Parametric Study on Bone Screw Designs for Holding Power,” Journal of Mechanics,vol.22, pp13-18(2006).
    [21]S.H. Chung, S.J. Heo, J.Y. Koak, S.K. Kim, J.B. Lee, J.S. Han, C.H. Han, I.C. Rhyu, S.J. Lee, “Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study,” Journal of Oral Rehabilitation,vol.35,pp229-236(2008).
    [22]L. Kong, Y. Sun, K. Hu, Y. Liu, D. Li, Z. Qiu, B. Liu, “Selection of the cylinder implant neck taper and implant end fillet for optimal biomechanical properties:A three-dimensional finite element analysis,” Journal of Biomechanics,vol.41, pp1124-1130(2008).
    [23]V. Vitins, M. Dobelis, J. Middleton, G. Limbert, I. Knets, “Flexural and Creep Properties of Human Jaw Compact Bone for FEA Studies,” Computer Methods in Biomechanics and Biomedical Engineering,vol.6,pp299-303 (2003).
    [24]B.K.B. Berkovitz,“The structure of the periodontal ligament: an update,” Eur. J. Orthodontics,vol.12, pp51-76(1990).
    [25]J.B.Brunski,“Biomechanical factors affecting the bone-dental implant interface,” Clin Mater,vol.10, PP153-201(1992).
    [27]X-ray Microtomograph Instruction manual.
    [28]J. Steigenga, K. Al-shammari, C. Misch, F.H. Nociti, H.L. Wang, “Effect of implant thread geometry on percentage of osseointegration and reaiatance to reverse torque in the tibia of rabbits,” J Periodontol,vol.75, pp1233-1241(2004).
    [29]Straumann product catalog 2012.
    [30]H.J.Chun, S.Y. Cheong, J.H. Han, J.P. Chung, I.C. Rhyu, Y.C. Choi, H.K. Baik,Y. Ku, M.H. Kim, “Evaluation of design parameters of osseointegrated dental implants using finite element analysis,” Journal of Oral Rehabilitation,vol.29, pp565-574(2002).
    [31]Carl E. Misch, “Contemporary Implant Dentistry”, Elsevier Health Sciences(2007).
    [32]P.K. Bolind, C.B. Johansson, W. Becker, L. Langer, E.B. Sevetz, T.O. Albrektsson, “A descriptive study on retrieved non-threaded and threaded implant designs,” Clin Oral Implants Res,vol.16, pp447-455(2005).
    [33]C.L. Lin, S.H. Chang, J.C. Wang, “Finite element analysis of biomechanical interactions of a tooth-implant splinting system for various bone qualities,” Chang Gung Med J,vol.29, pp143-153(2006).
    [34]S.Hansson,M.Werke,“The implant thread as a retention element in cortical bone:the effect of thred size and thread profile:a finte element study,” Journal of Biomechanics,vol.36, pp1247-1258(2003).
    [35]C.S. Petrie, J.L. Williams,“Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis,” Clin Oral Implants Res,vol.16, pp486-494(2005).
    [36]L. Himmlova, T. Dostalova, A. Kacovsky, S. Konvickova, “Influence of implant length and diameter on stress distribution:a finite element analysis,” J Prosthet Dent,vol.91, pp20-25(2004).
    [37]呂國富, “人工植牙臨床上生物機械學的考量-臨床口腔植體學”,日毅出版 (1999)。
    [38] C.J. Ivanoff, L. Sennerby, C. Johansson, B.Rangert, U. Lekholm, “Influence of implant diameters on the integration of screw implants:An experimental study in rabbits,” Int J Oral Maxillofac surg,vol.26, pp141-148(1997).
    [39]L.Kong, Y. Zhao, K. Hu, D. Li, H. Zhou, Z. Wu, B. Liu, “Selection of the implant thread pitch for optimal biomechanical properties:A three-dimensional finite element abalysis,” Advances in Engineering Software,vol.40, p474-478(2009).
    [40]L. Kong, B.L. Liu, K.J. Hu, D.H. Li, Y.L. Song, P. Ma, J. Yang “[Optimized thread pitch design and stress analysis of the cylinder screwed dental implant],” Hua Xi Kou Qiang Yi Xue Za Zhi,vol.24,pp509-512(2009).
    [41]J.D. Bumgardner, J.G. Boring, R.C. Cooper, C. Gao, S. Givaruangsawat, J.A. Golbert, C.M. Misch, D.E. Steflik, “Preliminary evaluation of a new dental implant design in canine models,”Implant Dent, vol.9, pp252-260(2000).
    [42]Tadashi Kokubo, K.M. Hyun, Masakazu Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, vol.24, pp2161-2175(2003).
    [43]B.C.Wang, E. Chang, “Characteristics and Osteoconductivity of Three Different Plasma sprayed Hydroxyapatite Coatings,” Surface and Coating Technology,vol.58, pp107-117(1993).
    [44]S.R.Witek,E.D. Butler, “The grain boundary microstructure of a commercial 97% alumina,and the effect of ZrO2/Y2O3 additions,” J.of mater.Sci.Letters,vol.4,pp1412-1414(1985).
    [45]呂重名“生醫材料的衰變探討系列之二陶瓷材料的衰變,” Biomedical Engineering-Applications,Basis&Communications,pp431-433 (1991).
    [46]K.de Groot,C.P.A.T. Klein, “Chemistry of calcium phosphate bioceramics,” in CRC Handbook of Bioactive Ceramics,Vol.2, pp3-16(1990).
    [47]M. Neo, S. Kotani, T.Yamamuro, C. Ohtsuki, T. Kokubo, Y. Bando, “A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone,”J.Biomed. Mater. Res., vol.26, pp1419-1432(1992).
    [48]張心棟、俞耀庭 “生物醫用材料” 天津大學出版(1995)。
    [49]Stephen C. Cowin,“Bone mechanics handbook, 2nd ed,” Taylor and Francis(2001).
    [50]A. Sertgoz, S. Guvener,“Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis,” Journal of Prosthetic Dentistry,vol.76,pp165-169 (1996).
    [51]C.S. Petrie, J.L. Williams,“Comparative evaluation of implant designs:influence of diameter,length,and taper on strain in the alveolar crest.A three-dimensional finite-element analysis,” Clin Oral Implant Res,vol.16, pp486-494(2005).
    [52]James M.Gere,Barry J.Goodno, “Mechanics of materials seventh edition,” CENGAGE Learning(2009).
    [53]J.W. Pugh, R.M. Rose, E.L. Radin, “Elastic and viscoelastic properties of trabecular bone:Dependence on structure,” Journal of Biomechanics,vol.6, pp475-478(1973).
    [54]R. Skalak, “Aspects of biomechanical considerations,” Tissue-integrated prosthesis:osseointegration in clinical dentistry,Chicago:Quintessence, vol117-128(1985).
    [55]J. Wolff,“Principles of bone transformation,” translated by Hujust Hurschwald, Berlin(1892).
    [56]H.M. Frost,“Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem,” Anat Rec,vol.226, pp403-403(1990).
    [57]H.M. Frost,“Bone ”mass”and the “mechanostat”:a proposal”,Anat Rec,vol219, pp1-9(1987).
    [58]H.M. Frost,“A determinant of bone architecture.The minimum effective strain”,Clin Orthop Relat Res,vol.175, pp286-292(1983).
    [59]H.Van Oosterwyck, J. Duyck, J. Vander Sloten, G. Van der Perre, M. De Cooman, S. Lievens, R. Puers, I. Naert, “The influence of bone mechanical properties and implant fixation upon bone loading around oral implants,” Clin Oral Implants Res,vol.9, pp407-418(1998).
    [60]U. Meyer, D. Vollmer, C. Runte, C. Bourauel, U. Joos, “Bone loading pattern around implants in average and atrophic edentulous maxillae:a finite-element analysis,” J Craniomaxillofac Surg,vol.29, pp100-105(2001).
    [61]丁信智, “電漿披覆生醫陶瓷鍍層(Plasma Sprayed Bioceramic Coatings),” pp62-69(2001)。
    [62]S.G.D. Oliveira and P. I. Seridarian, “Tooth displacement due to occlusal contacts: a three-dimensional finite element study,” J. Oral Rehabilitation, vol.33, no.12, pp874-880(2006).
    [63]H.J. Meijer, F.J. Starmans, F. Bosman, W.H. Steen “A comparison of three finite element models of an edentulous mandible provided with implant,” J Oral Rehabil,vol.20, pp147-157(1993).
    [64]吳心怡, “運用多目標模擬最佳化演算法求解生產控制與庫存管理問題”,國立高雄第一科技大學運籌管理所碩士論文(2006)。
    [65]S. Agatonovic-Kustrin, R. Beresford, “Basic Concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research”,Journal of Pharmaceutical and Biomedical Anlysis,vol.22, pp717-727(2000).
    [66]F.H. Dar, J.R. Meakin, R.M. Aspden, “Statistical methods in finite element analysis”,Journal of Biomechanics,vol.35, pp1155-1161(2002).
    [67]G.E.P. Box, K.B. Wilson, “On the Experimental Attainment of Optimum Conditions”,Journal of the Royal Statistical Society,vol.13, No.1(1951).
    [68]K.H. Wolfgang, “MVAresponsesurface”, Applied Multivariate Statistical Analysis(2010).
    [69]吳玉印, “新版實驗計劃法”中興管理顧問公司(1998)。
    [70]T. Ichikawa, H. Kanitani, R. Wiqianto, N. Kawamoto, N. Matsumoto, “Influence of bone quality on the stress distribution.An in vitro experiment,”Clin Oral Implants Res,vol.8, pp18-22(1997).
    [71]M.D. Gross, J. Nissan,“Stress distribution around maxillary implants in anatomic photoelatic models of varying geometry.ParII,”J Prosthet Dent,vol.85, pp450-454(2001).
    [72]D.T. Reilly, A.H. Burstein,“The elastic and ultimate properties of compact bone tissue”J Biomech, vol.8, pp393-405(1975).
    [73]E.F. Morgan, T.M. Keaveny, “Dependence of yield strain of human trabecular bone on anatomic site,” J Biomech,vol.34, pp569-577(2001).
    [74]M. Espositi, J.M. Hirsch, U. Lekholm, P. Thomsen, “Biological factors contributing to failures of osseointegrated oral implants,” Eur J Oral,vol.106, pp721-764(1998).
    [75]C.E. Misch, M.W. Bides, M. Sharawy, “A bioengineered implant for a predetermined bone cellular response to loading forces.A literature review and case report,” J Periodontol,vol.72, pp1276-1286(2001).
    [76]D.F. Rigsby, M.W. Bidez, C.E. Misch, “Bone response to mechanical loads,” Contemporary Implant Dentistry,vol.317.
    [77]M. Bouvier,“Application of in vivo bone strain measurement techaniques to problems of skeletal adaptions”,Yrbk Phys Anthropol,vol.28, pp237-247(1985).
    [78]J.D. Currey,“The mechanical adaptations of bones,” Princeton University Press, vol.143(1985).
    [79]R.C. Hibbeler , “Mechanics Of Materials ,“ 6 edition , Pearson, p585.
    [80]K.L. Reifsnider, K.L. Reifsnider, S.W. Case, “A micromechanics-based method foroff-axis strength prediction of unidirectional laminae-Approach for a nonlinear rubber lamina,” M. Science(1999).
    [81]左亮,肖緋雄, “橡膠Mooney-Rivlin模型材料系數的一種確定方法,”機械製造46卷, 第527期, P38-P40(2008)。

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE