簡易檢索 / 詳目顯示

研究生: 王瑞榮
Wang, Rei-Rong
論文名稱: 具電壓平衡電路之新型七階變頻器研製
Study and Implementation of a Novel Seven-Level Inverter with Voltage-Balancing Circuit
指導教授: 陳建富
Chen, Jian-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 多階變頻器電壓平衡電路零電壓切換
外文關鍵詞: multilevel inverter, voltage-balancing circuit, zero voltage switching
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一具有電壓平衡電路之新型七階變頻器,目的在於設計低總諧波失真率之多階輸出。前級電壓平衡電路採用交錯式切換技術可使開關操作於零電壓切換;後級變頻器透過組合電容電壓產生七種輸出電壓階級。本文架構使用較少之功率開關及被動元件去實現多階層輸出,當負載增大時,可設計相對較小之電感值,不僅提高功率密度,且能達到高電力品質。實驗結果證明,電壓平衡電路可有效地平衡輸入電容電壓。本文亦設計一輸入直流電壓200 V及輸出功率1 kW之實作電路,滿載下輸出電壓總諧波失真率為1.85 %。

    The thesis proposes a novel seven-level inverter with voltage-balancing circuit. The new topology produces a low total harmonic distortion rate to implement a multilevel output. Moreover, introducing interleaved control to the new voltage-balancing circuit makes it possible to operate at zero voltage switching. The inverter is capable of producing seven output-voltage levels from the capacitor voltage. The new topology produces a significant reduction in the number of power switching devices and passive components to implement a multilevel output. The inductor value can be decreased when output load is increased, this can not only increase the power density, but also achieve high power quality. Experimental results obtained from a 200-V 1-kW prototype verify the effectiveness of the new voltage-balancing circuit. The THD of output voltage is 1.85 % under full load condition.

    中英文摘要........................................I 誌謝...........................................III 目錄............................................IV 表目錄.........................................VII 圖目錄........................................VIII 第一章 緒論.......................................1 1.1 研究背景與動機..............................1 1.2 研究內容與目的..............................2 1.3 論文大綱...................................4 第二章 多階變頻器之架構與應用........................5 2.1 前言.......................................5 2.2 多階變頻器介紹...............................6 2.2.1 二極體箝位式多階變頻器....................6 2.2.2 飛輪電容式多階變頻器......................8 2.2.3 串接式多階變頻器........................10 2.2.4 簡易型多階變頻器........................12 2.2.5 具電壓平衡電路之五階二極體箝位式變頻器......14 2.2.6 各式多階變頻器之比較.....................17 2.3 正弦脈波寬度調變切換技術......................18 第三章 新型七階變頻器...............................21 3.1 前言.......................................21 3.2 新型七階變頻器電路架構........................22 3.3 新型七階變頻器模式分析........................23 3.4 相位配置脈波寬度調變..........................29 第四章 新型電壓平衡電路.............................34 4.1 前言.......................................34 4.2 新型電壓平衡電路架構..........................35 4.3 新型電壓平衡電路模式分析......................36 4.4 變頻器等效電阻分析...........................44 4.5 電壓平衡原理分析.............................50 第五章 模擬及實驗結果...............................53 5.1 前言.......................................53 5.2 模擬結果....................................55 5.2.1 新型七階變頻器模擬.......................55 5.2.2 具電壓平衡電路之新型七階變頻器模擬..........56 5.3 實驗結果....................................59 5.3.1 新型七階變頻器之實測結果...................59 5.3.2 具電壓平衡電路之新型七階變頻器實測結果.......61 5.3.3 效率分析................................67 5.3.3.1 新型電壓平衡電路效率分析...............67 5.3.3.2 新型七階變頻器效率分析.................69 第六章 結論與未來展望................................73 6.1 結論.........................................73 6.2 未來展望......................................74 參考文獻............................................75 附錄................................................77

    參考文獻
    [1] 劉恆齊,「綠色能源科技與減碳效益之選擇價值評估之研究」,國立台北大學碩士論文,2010。
    [2] A. Nabae, I. Takahashi and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans. on Industry Applications, vol. IA-17, no. 5, pp. 518-523, Sep. 1981.
    [3] X. Yuan and I. Barbi, “Fundamentals of a New Diode Clamping Multilevel Inverter,” IEEE Trans. on Power Electronics, vol. 15, no.4, pp. 711-718, July 2000.
    [4] Q. Tang, D. Czarkowski, X. Yang and S. Lu, “A New Diode-Clamping Multilevel Converter with Reduced Device Count and DC Voltage Balancing Control,” in Proc. IEEE ECCE, pp. 3116-3123, Sep. 2009.
    [5] W. K. Lee, T. J. Kim, D. W. Kang and D. S. Hyun, “A Carrier-Rotation Strategy for Voltage Balancing of Flying Capacitors in Flying Capacitor Multi-Level Inverter,” in Proc. IEEE IECON, vol. 3, pp. 2173-2178, Nov. 2003.
    [6] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim and D. S. Hyun, “A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Trans. on Industrial Electronics, vol. 52, no. 3, pp. 879-888, Jun. 2005.
    [7] M. Khazraei, H. Sepahvand, K. A. Corzine and M. Ferdowsi, “Active Capacitor Voltage Balancing in Single-Phase Flying-Capacitor Multilevel Power Converters,” IEEE Trans. on Industrial Electronics, vol. 59, no.2, pp. 769-778, Feb. 2012.
    [8] L. A. Tolbert, F. Z. Peng, T. Cunnyngham and J. N. Chiasson, “Charge Balance Control Schemes for Cascade Multilevel Converter in Hybrid Electric Vehicles,” IEEE Trans. on Industrial Electronics, vol. 49, no. 5, pp. 1058-1064, Oct. 2002.
    [9] Y. Hinago and H. Koizumi, “A Single-Phase Multilevel Inverter Using Switched Series/Parallel DC Voltage Sources,” IEEE Trans. on Industrial Electronics, vol. 57, no. 8, pp. 2643-2650, Aug. 2010.
    [10] R. Seyezhai, B. L. Mathur, “Hybrid Cascaded H-Bridge Multilevel Inverter for Fuel Cell Power Conditioning Systems,” in Proc. UPEC, pp. 1-5, Sep. 2008.
    [11] N. A. Rahim, K. Chaniago and J. Selvaraj, “Single-Phase Seven-Level Grid-Connected Inverter for Photovoltaic System,” IEEE Trans. on Industrial Electronics, vol. 58, no. 6, pp. 2435-2443, Jun. 2011.
    [12] R. Yang, G. Wang, Y. Yu, D. Xu and Z. Xu, “A Fast Generalized Multilevel Voltage SVPWM Algorithm Based on Voltage Decomposition,” in Proc. IEEE ICIEA, pp. 1220-1224, Jun. 2010.
    [13] K. Sano and H. Fujita, “Voltage-Balancing Circuit Based on a Resonant Switched-Capacitor Converter for Multilevel Inverters,” IEEE Trans. on Industry Applications, vol. 44, no. 6, pp. 1768-1776, Nov. 2008.
    [14] K. Hasegawa and H. Akagi, “A New DC-Voltage-Balancing Circuit Including a Single Coupled Inductor for a Five-Level Diode-Clamped PWM Inverter,” IEEE Trans. on Industry Applications, vol. 47, no. 2, pp. 841-852, Mar. 2011.
    [15] N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics Third Edition,” John Wiley & Sons, Inc, Oct. 2002.
    [16] N. S. Choi, J. G. Cho and G. H. Cho, “A General Circuit Topology of Multilevel Inverter,” in Proc. PESC, pp. 96-103, Jun. 1991.
    [17] 陳基漳,「新式3階段切換技術應用於直流/直流轉換器及真流/交流變流器之設計」,國立交通大學碩士論文,2006。
    [18] 徐同槿,「二極體鉗位式多階變頻器之中性點電位平衡控制器設計與製作」,清雲科技大學碩士論文,2005。
    [19] G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter and M. I. Gimenez, “A New Simplified Multilevel Inverter Topology for DC-AC Conversion,” IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 1311-1319, Sep. 2006.
    [20] V. K. Chinnaiyan, J. Jerome, J. Karpagam and T. Suresh, “Control Techniques for Multilevel Voltage Source Inverters,” in Proc. IPEC, pp. 1023-1028, Dec. 2007.
    [21] T. J. Kim, D. W. Kang, Y. H. Lee, D. S. Hyun, “The Analysis of Conduction and Switching Losses in Multi-Level Inverter System,” in Proc. PESC, vol. 3, pp. 1363-1368, 2001.

    下載圖示 校內:2017-07-30公開
    校外:2017-07-30公開
    QR CODE