簡易檢索 / 詳目顯示

研究生: 王常勉
Wang, Chang-Mien
論文名稱: 土地利用對地表逕流跨越相鄰流域現象的影響
Impact of Land Use on the Phenomenon of Surface Runoff Crossing Adjacent Watershed Boundaries
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 140
中文關鍵詞: 土地利用跨流域地文性淹排水模式
外文關鍵詞: land use, cross-watershed boundary, physiographic drainage–inundation model
相關次數: 點閱:48下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在流域的概念下,水通常沿著流域的地形特徵流動不會跨越流域,但實際模擬中下游土地開發區域,不易掌握實際流域邊界位置,會有相鄰流域綜合模擬時出現跨流域逕流的現象。本研究區域為臺灣西南部的高屏溪及東港溪,採用地文性淹排水模式模擬,藉由雨量分析Horner公式取得研究區域雨量站各重現期的雨量進行淹水模擬,探討是否會產生跨流域逕流,模擬結果透過ArcGIS呈現。
    研究區域中流域交界線的斷面兩側,平均高程皆為高屏溪流域高於東港溪流域。模擬結果顯示研究區域跨域逕流初期並不明顯,5年重現期開始產生現象,25年重現期以前跨域逕流為局部不易辨識方向,25年重現期開始跨域逕流現象明顯可辨識為高屏溪流域流向東港溪流域,50年重現期以後東港溪除負擔自身流域降雨產生逕流外,還需承受部分高屏溪跨域逕流,表示隨著降雨量及淹水深度的增加,相鄰流域間水流方向決定因素從地形高程改為水位較高或上升速度較高。而東港溪下游右岸在50年重現期模擬的時候,最大水位幾乎已達計畫堤頂高,隨時可能有溢堤之風險,在考慮極端氣候影響下,可能有再檢討改進的需求,而在流域下游處改善區域進行淹水改善,道路加高的方案明顯優於在地滯洪。
    跨域逕流伴隨土地發展程度日益明顯,土地開發活動改變地表高程或土地坡度,使跨域逕流易發生在包含建築、農業及交通用地的已開發土地,尤其建築及農業用地,最不易產生跨域逕流的則是森林的位置。因此在進行綜合防洪管理時,須考慮相鄰流域產生跨域逕流,並常態性滾動檢討劃設的流域邊界線,以符合真實存在的自然現象。

    The concept of watersheds, also known as catchments, is essential for both flood man-agement and water resource administration, as it significantly enhances the assessment of overland flow characteristics. Watershed boundaries are generally defined by elevation, since water naturally follows the geological traits of watersheds and does not transcend these boundaries. However, changes in elevation and land usage due to human develop-ment have led to ambiguous and unstable boundaries between adjacent watersheds in the flat terrain downstream.
    This study focuses on the Kaoping and Donggang River watersheds to examine the cross-watershed runoff phenomenon during rainfall events of varying return periods. Ac-cording to land use surveys in the area, the region near the boundary of the two water-sheds is heavily developed, primarily for agricultural, residential, and transportation purposes. As the study area was extensively developed, cross-watershed runoff was noted even for the numerical simulation of 2-year return period rainfall.
    The size and depth of the areas experiencing cross-watershed runoff stabilize in numeri-cal simulations of 25-year return period or more, due to the obstruction of further surface runoff by surrounding high-elevation terrain. Therefore, as planning for flood mitigation, it is essential to consider cross-watershed runoff from neighboring watersheds in addition to the conventional surface runoff.

    摘要 I Impact of Land Use on the Phenomenon of Surface Runoff Crossing Adjacent Watershed Boundaries II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 研究架構 5 第二章 理論模式 6 2-1 模式簡介 6 2-2 研究區域 11 2-2-1 高屏溪流域 13 2-2-2 東港溪流域 15 2-2-3 數值高程 16 2-2-4 土地利用 20 2-2-5 防洪建造物 23 2-2-6 演算網格 23 2-3 地文特性率定 24 2-3-1 降雨 26 2-3-2 潮汐 33 2-3-3 水位率定 34 第三章 數值模擬 39 3-1 雨量頻率分析 39 3-1-1 雨量分析 39 3-1-2 分析成果 41 3-2 模擬結果 53 3-2-1 流域淹水模擬 53 3-2-2 綜合流域淹水模擬 63 第四章 結果與討論 77 4-1 跨流域逕流分析 77 4-2 土地利用對跨流域逕流探討 83 4-3 改善方案 89 4-3-1 在地滯洪 90 4-3-2 道路加高 92 第五章 結論與建議 100 5-1 結論 100 5-1-1 各重現期模擬結論 100 5-1-2 一般性結論 100 5-1-3 土地利用結論 101 5-2 建議 101 參考文獻 102 附錄 106 附錄一:蘇迪勒颱風模擬期間雨量測站雨量主體圖 106 附錄二:梅姬颱風模擬期間雨量測站雨量主體圖 109 附錄三:研究區域雨量站各重現期48小時的雨量組體圖 112

    1. Almeida, C. R. D., Teodoro, A. C., & Gonçalves, A. (2021). Study of the urban heat island (UHI) using remote sensing data/techniques: A systematic re-view. Environments, 8(10), 105.
    2. Bajjali, W. (2023). ArcGIS Pro and ArcGIS Online: Applications in Water and Envi-ronmental Sciences. Springer Nature.
    3. Blair, A., Sanger, D., White, D., Holland, A. F., Vandiver, L., Bowker, C., & White, S. (2014). Quantifying and simulating stormwater runoff in watersheds. Hydrological Processes, 28(3), 559-569.
    4. Chao YiChiung, C. Y., Li HsinChi, L. H., Liou JunJih, L. J., & Chen YungMing, C. Y. (2016). Extreme bed changes in the Gaoping River under climate change.
    5. Chen, C. N., Tsai, C. H., & Tsai, C. T. (2006). Simulation of sediment yield from watershed by physiographic soil erosion–deposition model. Journal of hydrolo-gy, 327(3-4), 293-303.
    6. Chen, C. N., Tsai, C. H., & Tsai, C. T. (2007). Reduction of discharge hydrograph and flood stage resulted from upstream detention ponds. Hydrological Processes: An In-ternational Journal, 21(25), 3492-3506.
    7. Chen, C. N., & Tfwala, S. S. (2018). Impacts of climate change and land subsidence on inundation risk. Water, 10(2), 157.
    8. Chu, X., & Steinman, A. (2009). Event and continuous hydrologic modeling with HEC-HMS. Journal of Irrigation and Drainage Engineering, 135(1), 119-124.
    9. Dilley, M. (2005). Natural disaster hotspots: a global risk analysis (Vol. 5). World Bank Publications.
    10. El Bilali, A., Taleb, A., & Boutahri, I. (2021). Application of HEC-RAS and HEC-LifeSim models for flood risk assessment. Journal of Applied Water Engi-neering and Research, 9(4), 336-351.
    11. Ghassemi, F., & White, I. (2007). Inter-basin water transfer: case studies from Aus-tralia, United States, Canada, China and India. Cambridge University Press.
    12. Gupta, J., & van der Zaag, P. (2008). Interbasin water transfers and integrated water resources management: Where engineering, science and politics interlock. Physics and Chemistry of the Earth, Parts a/b/c, 33(1-2), 28-40.
    13. Harrington, L., Cook, S. E., Lemoalle, J., Kirby, M., Taylor, C., & Woolley, J. (2009). Cross-basin comparisons of water use, water scarcity and their impact on livelihoods: present and future. Water International, 34(1), 144-154.
    14. Hayashi, M., & Rosenberry, D. O. (2002). Effects of ground water exchange on the hydrology and ecology of surface water. Groundwater, 40(3), 309-316.
    15. Im, S., Kim, H., Kim, C., & Jang, C. (2009). Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environmental geology, 57, 231-239.
    16. Inoue, K., Iwasa, Y., & Matsuo, N. (1987, March). Numerical analysis of two‐dimensional free surface flow by means of finite difference method and its applica-tion to practical problems. In Proceedings of ROC-Japan Joint Seminar on Water Resources Engineering, Taipei.
    17. IWasa, Y., & InOue, K. (1982). Mathematical simulations of channel and overland flood flows in view of flood disaster engineering. Natural disaster science, 4(1), 1-30.
    18. Kitheka, J. U., Obiero, M., & Nthenge, P. (2005). River discharge, sediment transport and exchange in the Tana Estuary, Kenya. Estuarine, Coastal and Shelf Sci-ence, 63(3), 455-468.
    19. Li, M. H., Hsu, M. H., Hsieh, L. S., & Teng, W. H. (2002). Inundation potentials analysis for Tsao-Ling landslide lake formed by Chi-Chi earthquake in Tai-wan. Natural Hazards, 25, 289-303.
    20. Lo, W., Huang, C. T., Wu, M. H., Doong, D. J., Tseng, L. H., Chen, C. H., & Chen, Y. J. (2021). Evaluation of flood mitigation effectiveness of nature-based solutions po-tential cases with an assessment model for flood mitigation. Water, 13(23), 3451.
    21. Magee, A. D., Kiem, A. S., & Chan, J. C. (2021). A new approach for loca-tion-specific seasonal outlooks of typhoon and super typhoon frequency across the Western North Pacific region. Scientific reports, 11(1), 19439.
    22. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391.
    23. Mathew, A., Khandelwal, S., & Kaul, N. (2016). Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and el-evation on land surface temperature: Study of Chandigarh city, India. Sustainable Cities and Society, 26, 264-277.
    24. Mathew, A., Khandelwal, S., & Kaul, N. (2017). Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vege-tation, urbanization and elevation parameters. Sustainable cities and society, 35, 157-177.
    25. McDonald, R. I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P. A., ... & Montgomery, M. (2014). Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global environmental change, 27, 96-105.
    26. McGinnis, M. V. (1999). Making the watershed connection. Policy Studies Jour-nal, 27(3), 497.
    27. Mei, W., & Xie, S. P. (2016). Intensification of landfalling typhoons over the north-west Pacific since the late 1970s. Nature Geoscience, 9(10), 753-757.
    28. Mishra, S. K., & Singh, V. P. (2013). Soil conservation service curve number (SCS-CN) methodology (Vol. 42). Springer Science & Business Media.
    29. Modi, P., Revel, M., & Yamazaki, D. (2022). Multivariable integrated evaluation of hydrodynamic modeling: a comparison of performance considering different base-line topography data. Water Resources Research, 58(8), e2021WR031819.
    30. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
    31. Nickolas, L. B., Segura, C., & Brooks, J. R. (2017). The influence of lithology on surface water sources. Hydrological Processes, 31(10), 1913-1925.
    32. Nossent, J., & Bauwens, W. (2012, April). Application of a normalized Nash-Sutcliffe efficiency to improve the accuracy of the Sobol'sensitivity analysis of a hydrological model. In EGU general assembly conference abstracts (p. 237).
    33. O'Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), 244-261.
    34. Oksanen, J., & Sarjakoski, T. (2005). Error propagation analysis of DEM‐based drainage basin delineation. International Journal of Remote Sensing, 26(14), 3085-3102.
    35. Shao, M., Zhao, G., Kao, S. C., Cuo, L., Rankin, C., & Gao, H. (2020). Quantifying the effects of urbanization on floods in a changing environment to promote water security—A case study of two adjacent basins in Texas. Journal of Hydrology, 589, 125154.
    36. Shiau, J. T., Chen, C. N., & Tsai, C. T. (2012). Physiographic drainage-inundation model based flooding vulnerability assessment. Water resources management, 26, 1307-1323.
    37. Siddik, M. A. B., Dickson, K. E., Rising, J., Ruddell, B. L., & Marston, L. T. (2023). Interbasin water transfers in the United States and Canada. Scientific Data, 10(1), 27.
    38. Sreeja, K. G., Madhusoodhanan, C. G., & Eldho, T. I. (2016). Coastal zones in inte-grated river basin management in the West Coast of India: Delineation, boundary issues and implications. Ocean & Coastal Management, 119, 1-13.
    39. Teng, W. H., Hsu, M. H., Wu, C. H., & Chen, A. S. (2006). Impact of flood disasters on Taiwan in the last quarter century. Natural Hazards, 37, 191-207.
    40. Thieken, A. H., Cammerer, H., Dobler, C., Lammel, J., & Schöberl, F. (2016). Esti-mating changes in flood risks and benefits of non-structural adaptation strategies-a case study from Tyrol, Austria. Mitigation and adaptation strategies for global change, 21, 343-376.
    41. Todini, E., & Venutelli, M. (1991). Overland flow: a two-dimensional modeling ap-proach. Recent advances in the modeling of hydrologic systems, 153-166.
    42. Woessner, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater, 38(3), 423-429.
    43. Yang, C. J. (2000). Study on construction of a physiographic inundation forecasting system. National Cheng-Kung University: Tainan, Taiwan.
    44. Zhou, Y., Guo, S., Hong, X., & Chang, F. J. (2017). Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China. Journal of Hydrology, 553, 584-595.
    45. Zhou, W., Zhu, Z., Xie, Y., & Cai, Y. (2021). Impacts of rainfall spatial and temporal variabilities on runoff quality and quantity at the watershed scale. Journal of Hy-drology, 603, 127057.
    46. Zhuang, W. (2016). Eco-environmental impact of inter-basin water transfer projects: a review. Environmental Science and Pollution Research, 23, 12867-12879.
    47. 王如意(2003),「水災損失評估系統模式之建立(2/2)」,經濟部水利署研究計畫報告。
    48. 呂育勳、蔡長泰、顏沛華、吳慶現(1995),「淹水數學模式之實驗研究」,第四十三卷,第二期,第37-44頁。
    49. 巫孟璇(2013),「地文性淹水即時預報模式之發展與應用」,博士論文,國立成功大學水利及海洋工程研究所。
    50. 巫孟璇、蔡智恆、陳金諾、蔡長泰(2010),「暴潮對沿海地區淹水潛勢與淹水風險之影響」,中國土木水利工程學刊,第二十二卷,第四期,第387-398頁。
    51. 楊昌儒(2000),「地文性淹水預報系統建構之研究」,博士論文,國立成功大學水利及海洋工程研究所。
    52. 經濟部(2011),「易淹水地區水患治理計畫」。
    53. 經濟部(2013),「東港溪下游段治理規劃檢討(麟洛排水以下至出海口) 」。
    54. 經濟部水利署水利規劃試驗所(2006),「區域排水整治及環境營造規劃參考手冊」。
    55. 蔡長泰、游保杉、周乃昉、史天元、楊昌儒、蔡智恆(1997),「地理資訊系統在淹水預警上之應用 (四) 」,國立成功大學水利及海洋工程研究所研究報告,CKHOPJ-97-001。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE