| 研究生: |
莊秉育 Chuang, Ping-Yu |
|---|---|
| 論文名稱: |
具可抑制太陽能模組電流漣波之前饋控制的升壓式直流電能轉換器 Feed-Forward Controlled Boost-Type DC Power Converter for Current Ripple Reduction of PV Module |
| 指導教授: |
林瑞禮
Lin, Ray-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 主動濾波器 、升壓式 、直流轉換器 、前饋控制 、光伏 、太陽能模組 、漣波抑制 |
| 外文關鍵詞: | Active Filter, Boost-Type, DC-DC Converter, Feedforward Control, Photovoltaic, PV module, Ripple Reduction |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一具可抑制太陽能模組電流漣波之前饋控制的升壓式直流電能轉換器。60Hz單相SPWM變頻器將直流側電壓轉換成交流電壓輸出,其所反饋至直流端的120Hz脈衝電流會造成太陽能模組的輸出電流與電壓漣波,造成太陽能模組內阻功耗,減短太陽能模組壽命。為了抑制此由變頻器反饋的漣波電流,一般需採用大電解電容來濾波。而本論文電路採用前饋機制來抑制變頻器的反饋電流,以降低太陽能模組內阻功耗。
此外,本論文所提電路的直流升壓轉換比,可將太陽能模組端直流電壓升壓,提高後級變頻器的調變係數(Modulation Index),以便使用低壓太陽能模組。
最後,將實作一具85W雛型電路,進行系統總成測試,驗證本論文電路分別以戴維寧等效電路電源及太陽能模組電源供電下,於不同脈衝電流負載時,電源端可抑制電流漣波與電壓漣波的能力。
This thesis presents a boost-type DC-DC converter with feed-forward control mechanism to suppress the current ripple of PV modules. The AC output voltage is converted from the DC-link voltage by a 60Hz single-phase inverter. The 120Hz pulsating-current load at DC-side causes the PV current and voltage ripples, which lead to the power losses and reduce the lifetime of PV modules. In general, bulky capacitors are employed to suppress the PV current ripple. This thesis proposes a feed-forward control mechanism to suppress the PV current ripple for less internal power loss on PV modules.
Furthermore, the step-up voltage conversion ratio of the proposed boost-type DC-DC converter provides a high modulation index for the 60Hz single-phase inverter.
Finally, an 85W prototype circuit of the proposed boost-type DC-DC converter is designed and implemented to verify the suppression capability on the PV current and voltage ripples with a Thevenin-type and a PV emulator source, respectively.
[1] H. Hu, S. Harb, N. Kutkut, I. Batarseh and Z. J. Shen, "A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems," in IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2711-2726, June 2013.
[2] Y. Tang, F. Blaabjerg, P. C. Loh, C. Jin and P. Wang, "Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit," in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1855-1865, April 2015.
[3] C. Zhao et al., "Design and Implementation of a GaN-Based, 100-kHz, 102-W/in3 Single-Phase Inverter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 824-840, Sept. 2016.
[4] S. Qin and R. C. N. Pilawa-Podgurski, "A power density optimization method for a power pulsation decoupling buffer in single-phase DC-AC converters," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-8.
[5] H. Wang, H. S. H. Chung and W. Liu, "Use of a Series Voltage Compensator for Reduction of the DC-Link Capacitance in a Capacitor-Supported System," in IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1163-1175, March 2014.
[6] Y. Mahmoud, W. Xiao and H. H. Zeineldin, "A Simple Approach to Modeling and Simulation of Photovoltaic Modules," in IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 185-186, Jan. 2012.
[7] Darmansyah and I. Robandi, "Photovoltaic parameter estimation using Grey Wolf Optimization," 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, 2017, pp. 593-597.
[8] V. Tamrakar, S. C. Gupta and Y. Sawle, "Study of characteristics of single and double diode electrical equivalent circuit models of solar PV module," 2015 International Conference on Energy Systems and Applications, Pune, 2015, pp. 312-317.
[9] S. Bal, A. Anurag and B. C. Babu, "Comparative analysis of mathematical modeling of Photo-Voltaic (PV) array," 2012 Annual IEEE India Conference (INDICON), Kochi, 2012, pp. 269-274.
[10] ASEC, “Monocrystalline Silicon Photovoltaic Module, ”ASEC-85G5S Datasheet, 2008.
[11] F. T. Fernandes, L. C. Correa, C. De Nardin, A. Longo and F. A. Farret, "Improved analytical solution to obtain the MPP of PV modules," IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013, pp. 1674-1678.
[12] M. Patsalides, A. Stavrou, V. Efthymiou and G. E. Georghiou, "Thevenin Equivalent Circuit for the Study of High Photovoltaic Penetration in Distribution Grids", 4th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), vol., no., pp. 1-5, 2013.
[13] Z. Batushansky and A. Kuperman, “Thevenin-based approach to PV arrays maximum power prediction,” in Proc. 26th IEEE Conv. Electr. Electron. Eng. Israel, 2010, pp. 598–602.
[14] A. Chatterjee and A. Keyhani, “Thevenin’s equivalent of photovoltaic source models for MPPT and power grid studies,” in Proc. IEEE Power Energy Soc. Gen. Meet., Jul. 2011, pp. 1–7.
[15] Y. Wang, P. Zhang, W. Li, W. Xiao, and A. Abdollahi, “Online overvoltage prevention control of photovoltaic generators in microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 2071–2078, Dec. 2012.
[16] V. Vorperian, "Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode," in IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 490-496, May 1990.
[17] R. Lin, "Modeling and compensator design of LED driver systems," 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, 2017, pp. 1-6.
校內:2024-02-26公開