簡易檢索 / 詳目顯示

研究生: 李亦顓
Li, Yih-Juan
論文名稱: 具有漸變式砷化銦鎵通道異質結構場效電晶體之研製
Investigations of Heterostructure Field-Effect Transistors with Graded InxGa1-xAs Channel
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 65
中文關鍵詞: 變形晶格式高電子移動率電晶體漸變式砷化銦鎵通道摻雜通道式場效電晶體
外文關鍵詞: metamorphic HEMT, DCFET, graded InxGa1-xAs channel
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,分別在摻雜通道式場效電晶體與變形晶格式高電子移動率電晶體中採用組成漸變之砷化銦鎵通道。由於使用漸變式通道,因此使得元件操作特性獲得明顯改善。
      首先,我們成長具有摻雜的漸變式通道之對稱型雙邊�-摻雜砷化鋁鎵/砷化銦鎵異質結構場效電晶體,其中銦的組成從通道的底部(x = 0.22)漸變到通道的上層(x = 0.12)。在室溫和77 K可獲得改善的二維電子雲密度及電子遷移率分別為3.6 (3.2)×1012 cm-2 及4850 (18000) cm2/V.s,同時可獲得大於2伏特之閘極工作電壓擺幅 (gate voltage swing)。此外,由於使用了超晶格砷化鋁鎵/砷化鎵作為緩衝層,因此可以有效改善元件特性隨著溫度的升高而呈現劣化之缺點,包括減少漏電流、輸出電導、臨限電壓之位移。
      在變形晶格式高電子移動率電晶體中,為了要獲得更高的載子濃度,我們利用了雙重�-摻雜層和對稱漸變式通道。另外為了改善電子遷移率,銦的組成在通道的中央設定為0.5,而朝著通道的兩邊線性減為0.3。相較於In0.53Ga0.47As通道的結構,對稱漸變式通道的結構,不但具有較高的二維電子雲密度(4.8×1012 cm-2)且仍能維持高的電子遷移率(7520 cm2/V.s)。由於在對稱漸變式通道中改善了電子移動率及具有較佳的電子侷限能力,使得此結構的最大轉導值可達276 mS/mm。對於閘極線寬為1.5 �m的元件中,我們可以得到電流增益截止頻率及最大震盪頻率分別為22.4 GHz及45.5 GHz在具有對稱漸變式通道的結構中。這些特性以1.5 �m閘極線寬而言,是相當優越的。
      最後,我們提出一個以對稱漸變式InxGa1-xAs (x = 0.5�_0.65�_0.5)為通道,以反向步階漸變緩衝層的新型變形晶格高電子移動率電晶體。由於有較低的表面散射,在室溫及77 K時,其電子遷移率分別可高達9500及30600 cm2/V.s。藉由自我一致性的理論模擬,我們發現在漸變式通道中產生三個次能階,這和我們使用Shubnikov-de Haas (SdH) 分析所得之結果相同。此外,特藉由使用對稱漸變式通道、In0.425Al0.575As蕭基層和未摻雜之磷化銦層,元件的反向閘-汲崩潰電壓高達24伏特。同時,對於閘極線寬為1.5 �m的元件中,我們可以得到電流增益截止頻率及最大震盪頻率分別為18.9 GHz及48.4 GHz。這些改善的元件特性適合應用於高功率及高頻電路中。

      In this dissertation, a variety of compositionally graded InxGa1-xAs channels have been applied and investigated in the doped-channel field-effect transistors (DCFET’s) and the metamorphic high electron mobility transistors (MM-HEMT’s). Device performances are significantly improved due to the graded channel.
      First, a symmetric double-side �-doped AlGaAs/InxGa1-xAs heterostructue field-effect transistor with a homogeneously Si-doped graded channel has been studied. The In composition in the graded InxGa1-xAs channel was varied linearly from 0.22 (at the bottom of channel) to 0.12 (at the upper of channel). Improved two-dimension electron gas (2DEG) density and mobility at 300 (77) K as high as 3.6 (3.2)×1012 cm-2 and 4850 (18000) cm2/V‧s are achieved, respectively. Meanwhile, we can obtain a large gate voltage swing (GVS) over 2 V. Besides, the use of a superlattice AlGaAs/GaAs buffer layer can simultaneously reduce the leakage current, output conductance, the shift of threshold voltage with increasing temperature.
      For obtaining higher carrier concentrations, double �-doped layers were adopted in the metamorphic InAlAs/InGaAs HEMT’s. In order to improve the mobility, a higher indium composition (x = 0.5) was set at the center of channel and then decreased linearly toward both sides of the channel (x = 0.3). As compared with the metamorphic In0.42Al0.58As/In0.53Ga0.47As HEMT, the metamorphic InAlAs/InGaAs HEMT with symmetric graded InxGa1-xAs channel can obtain higher 2DEG density of 4.8×1012 cm-2 while keeping the electron mobility as high as 7520 cm2/V‧s. Due to the improved electron mobility and good carrier confinement in MM-HEMT’s with the symmetric graded InxGa1-xAs channel, the maximum transconductance of 276 mS/mm is obtained for the gate dimension of 1.5×125 �m2. Moreover, the measured current gain cutoff frequency and maximum oscillation frequency for a 1.5 �m gate length device are 22.4 GHz and 45.5 GHz, respectively. The device performances are among the best for 1.5 �m gate length.
      Finally, we have fabricated a novel MM-HEMT with a symmetric graded InxGa1-xAs (x=0.5�_0.65�_0.5) channel and an inverse step graded buffer layer. Due to the lower interface roughness scattering, an improved electron mobility as high as 9500 (30600) cm2/V‧s at 300 (77) K was achieved. By using the self-consistent calculation method, three subbands in the graded channel were determined, which are identical to the Shubnikov-de Haas (SdH) characterization. By using the symmetric graded channel, In0.425Al0.575As Schottky layer and the undoped InP setback layer, a high gate-drain breakdown voltage of 24 V is obtained. Meanwhile, the measured current gain cutoff frequency and maximum oscillation frequency for a 1.5 �m gate length device were found to be 18.9 GHz and 48.4 GHz, respectively. The improved characteristics are suitable for high-power and high-frequency circuit applications.

    Abstract Table Captions Figure Captions Chapter 1 Introduction 1 Chapter 2 Epitaxial Growth System and Experimental Procedures 7 2-1 LP-MOCVD System 7 2-2 MBE System 10 2-3 Device Fabrication 13 2-4 Fundamental Measurements 16 2-4-1 Hall Measurement 16 2-4-2 SIMS Measurement 17 2-4-3 SdH Measurement 17 2-5 Material Analysis 18 2-5-1 �-doped GaAs Layer 18 2-5-2 Graded InGaAs/GaAs Structure 19 Chapter 3 DCFET's with Graded InxGa1-xAs Channel and AlGaAs/GaAs Superlattice Buffer Layer 21 3-1 Introduction 21 3-2 Experiments 22 3-3 Results and Discussions 24 3-3-1 DC Characteristics 24 3-3-2 Temperature-Dependent Characteristics 26 3-3-3 Microwave Characteristics 29 3-4 Summary 30 Chapter 4 Double �-Doped InAlAs/InGaAs Metamorphic HMET’s 32 4-1 Introduction 32 4-2 Experiments 33 4-3 Results and Discussions 36 4-3-1 DC Characteristics 37 4-3-2 Microwave Characteristics 38 4-4 Summary 39 Chapter 5 Metamorphic HEMT’s with Symmetric Graded InxGa1-xAs Channel and an Inverse Step Graded Buffer Layer 41 5-1 Introduction 41 5-2 Experiments 42 5-3 Results and Discussions 44 5-3-1 Simulation and SdH Measurement 44 5-3-2 DC Characteristics 47 5-3-3 Microwave Characteristics 49 5-4 Summary 50 Chapter 6 Conclusion and Prospect 52 References 53 Figures Publication List 誌謝 自傳

    [1] M. Kao, P. M. Smith, P. Ho, P. Chao, K. H. G. Duh, A. A. Jabra, and J. M. Ballingall, “Very high power-added efficiency and low-noise 0.15-�m gate length pseudomorphic HEMT’s,” IEEE Electron Device Lett., vol. 10, p. 580, 1989.

    [2] G. M. Metze, J. F. Bass, T. T. Lee, A. B. Cornfeld, J. L. Singer, H. L. Hung, H. C. Huang, and K. P. Pande, “High-gain, V-band, low-noise MMIC amplifiers using pseudomorphic MODFETs,” IEEE Electron Device Lett., vol. 11, p. 24, 1990.

    [3] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S. M. Kang, K. Y. Cheng, and I. Adesida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, vol. 39, p. 2676, 1992.

    [4] C. S. Wu, C. K. Pao, W. Yau, H. Kanber, M. Hu, S. X. Bar, A. Kurdoghlian, Z. Bardai, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomorphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Microwave Theory and Tech., vol. 43, p. 257, 1995.

    [5] S. E. Rosenbaum, B. K. Kormanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompson, L. P. B. Katehi, and G. M. Rebeiz, “155- and 213-GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol. 43, p. 927, 1995.

    [6] T. Yokoyama, T. Kunihisa, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa, “Low current dissipation pseudomorphic MODFET MMIC power amplifier for PHS operating with a 3.5 V single voltage supply,” in IEEE GaAs IC Symp., p. 107, 1996.

    [7] O. S. A. Tang, K. H. G. Duh, S. M. J. Liu, P. M. Smith, W. F. Kopp, T. J. Rogers, and D. J. Pritchard, “Design of high-power, high-efficiency 60-GHz MMICs using an improved nonlinear PHEMT model,” IEEE J. Solid-State Circuits, vol. 32, p. 1326, 1997.

    [8] T. Tanaka, H. Furukawa, H. Takenaka, T. Ueda, T. Fukui, and D. Ueda, “Low-voltage operation GaAs spike-gate power FET with high power-added efficiency,” IEEE Trans. Electron Devices, vol. 44, p. 354, 1997.

    [9] H. Mizutani, N. Funabashi, M. Kuzuhara, and Y. Takayama, “Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. Microwave Theory and Tech., vol. 46, p. 1597, 1998.

    [10] N. Hara, Y. Nakasha, T. Kikkawa, H. Takahashi, K. Joshin, Y. Watanabe, H. Tanaka, and M. Takikawa, “Low-distortion GaAs-base field effect transistor with InGaP channel layer for high-voltage operation,” in IEDM Tech. Dig., p. 63, 1998.

    [11] I. Takenaka, K. Ishikura, H. Takahashi, K. Asano, J. Morikawa, K. Satou, K. Kishi, K. Hasegawa, F. Emori, and M. Kuzuhara, “L/S-band 140-W push-pull power AlGaAs/GaAs HFET’s for digital cellular base stations,” IEEE Solid- State Circuits, vol. 34, p. 1181, 1999.

    [12] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microwave Theory and Tech., vol. 48, p. 1313, 2000.

    [13] K. Matsunaga, I. Miura, and N. Iwata, “A CW 4-W Ka-band power amplifier utilizing MMIC multichip technology,” IEEE J. Solid-State Circuits, vol. 35, p. 1293, 2000.

    [14] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs-GaInAs HEMT’s utilizing low-temperature AlInAs buffers grown by MBE,” IEEE Electron Device Lett., vol. 10, p. 565, 1989.

    [15] D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal applications,” IEEE Electron Device Lett., vol. 12, p. 436, 1991.

    [16] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, p. 456, 1994.

    [17] L. W. Laih, W. S. Lour, J. H. Tsai, W. C. Liu, C. Z. Wu, K. B. Thei and R. C. Liu, “Characteristics of metal-insulator-semiconductor (MIS) like In0.2Ga0.8As/GaAs doped-channel structure,” Solid-State Electron., vol. 39, p. 15, 1995.

    [18] C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterostructure field-effect transistor,” Solid-State Electron., vol. 39, p. 791, 1996.

    [19] W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen, and W. C. Wang, “Application of selective removal of mesa sidewalls for high-breakdown and high-linearity Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Appl. Phys. Lett., vol. 74, p. 2155, 1999.

    [20] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel (CDC) heterostructure field-effect transistor,” IEEE Trans. Electron Devices, vol. 48, p. 2677, 2001.

    [21] R. T. Hsu, H. M. Shieh, W. C. Hsu, and T. S. Wu, "Enhanced Current Driving Capability GaAs/Graded InxGa1-xAs High Electron Mobility Transistor," Solid-State Electron., vol. 36, p. 1143, 1993.

    [22] H. M. Shieh, W. C. Hsu, R. T. Hsu ,C. L. Wu, and T. S. Wu "A high performance delta-doped GaAs/In(x)Ga(1-x)As pseudomorphic high electron mobility transistor utilizing a graded In(x)Ga(1-x)As channel," IEEE Electron Device Lett., vol. 14, p. 581, 1993.

    [23] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, "On the Improvement of Gate Voltage Swings in δ-Doped GaAs/InxGa1-xAs/GaAs Pseudomorphic Heterostructures," IEEE Trans. Electron Devices, vol. 40, p. 1630, 1993.

    [24] C. L. Wu, W. C. Hsu, H. M. Shieh, and W. C. Liu, "Mobility enhancement in double �-doped GaAs/InxGa1-xAs/GaAs pseudomorphic structures by grading the heterointerfaces," Appl. Phys. Lett., vol. 64, p. 3027, 1994.

    [25] Y. J. Li, H. M. Shieh, J. S. Su, M. J. Kao, and W. C. Hsu, “Improved double delta-doped InGaAs/GaAs heterostructures with symmetric graded channel,” Materials Chemistry and Physics, vol. 61, p. 266, 1999.

    [26] Y. J. Li, J. S. Su, Y. S. Lin and W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor,” Superlattices and Microstructures, vol. 28, p. 47, 2000.

    [27] C. Y. Chang, F. Kai, GaAs High Speed Devices (John Wiley & Sons, New York, 1994).

    [28] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, (John Wiley & Sons, New York, 1998).

    [29] P. Roblin, L. Rice, S. B. Bibyk, and H. Morkoc, “Nonlinear parasitics in MODFET’s and MODFET I-V characteristics,” IEEE Trans. Electron Devices, vol. 35, p. 1207, 1988.

    [30] K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, “Parasitic MESFET in (Al, Ga)As/GaAs modulation-doped FET’s and MODFET’s characterization,” IEEE Trans. Electron Devices, vol. 31, p. 29, 1984.

    [31] L. H. Cammitz, P. J. Tasker, P. A. Maki, H. Lee, J. Huang, and L. F. Eastman, “The role of charge control on drift mobility in AlGaAs/GaAs MODFET’s” in Proc. IEEE/Cornell Conf. Advanced Concepts in High-Speed Semiconductor Devices and Circuits, p. 199, 1985.

    [32] M. Hirano, Y. Takanashi, and T. Sugeta, “Current-voltage characteristics of an AlGaAs/GaAs heterostructure FET for high gate voltages,” IEEE Electron Device Lett., vol. 5, p. 496, 1991.

    [33] R. E. Williams and D. W. Shaw, “GaAs F.E.T.s with graded channel doping profiles,” Electron. Lett., vol. 13, p. 408, 1977.

    [34] D. H. Jeong, K. S. Jang, J. S. Lee, Y. H. Jeong, and B. Kim, “DC and ac characteristics of Al0.25Ga0.75As/GaAs quantum-well delta-doped channel FET grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 13, p. 270, 1992.

    [35] Y. Ando and T. Itoh, “Analysis of charge control in pseudomorphic two-dimensional electron gas field-effect transistors,” IEEE Trans. Electron Devices, vol. 35, p. 2295, 1988.

    [36] B. Kim, H. Q. Tserng, and H. D. Shih, “Microwave power GaAs MISFET’s with undoped AlGaAs as an insulator,” IEEE Electron Device Lett., vol. 5, p. 494, 1984.

    [37] H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, “A high-current drivability i-AlGaAs/n-GaAs doped-channel MIS-like FET (DMT), ” IEEE Electron Device Lett., vol. 7, p. 625, 1986.

    [38] H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, “An investigation of i-AlGaAs/n-GaAs doped-channel MIS-like FETs (DMT’s)-properties and performance potentialities,” IEEE Trans. Electron Devices, vol. 34, p. 1448, 1987.

    [39] B. Kim, R. J. Matyi, M. Wurtele, K. Bradshaw, M. A. Khatibazadeh, and H. Q. Tserng, “Millimeter-wave power operation of an AlGaAs/InGaAs/GaAs quantum well MISFET,” IEEE Trans. Electron Devices, vol. 36, p. 2236, 1989.

    [40] P. P. Ruden, M. Shur, A. I. Akinwande, D. E. Grider, and J. Beak, “AlGaAs/InGaAs/GaAs quantum well doped channel heterostructure field effect transistors,” IEEE Trans. Electron Devices, vol. 37, p. 2171, 1990.

    [41] Y. J. Chan, and M. T. Yang, “Device linearity improvement by Al0.3Ga0.7As/In0.2Ga0.8As heterostructure doped-channel FET’s,” IEEE Electron Device Lett., vol. 16, p. 60, 1995.

    [42] Y. J. Chan, and M. T. Yang, “Al0.3GA0.7As/InxGa1-xAs (0 �T x < 0.25) doped-channel field-effect transistors (DCFET’s),” IEEE Trans. Electron Devices, vol. 42, p. 1745, 1995.

    [43] M. T. Yang, and Y. J. Chan, “Device linearity comparisons between doped-channel and modulation-doped designs in pseudomorphic Al0.3Ga0.7As/In0.2Ga0.8As heterostructures,” IEEE Trans. Electron Devices, vol. 43, p. 1174, 1996.

    [44] F. T. Chien, and Y. J. Chan, “Improved AlGaAs/InGaAs HFETs due to double doped-channel design,” Electron. Lett., vol. 35, p. 427, 1999.

    [45] F. T. Chien, S. C. Chio, and Y. J. Chan, “Microwave power performance comparison between single and double doped-channel design in AlGaAs/InGaAs HFET’s,” IEEE Electron Device Lett., vol. 21, p. 60, 2000.

    [46] H. C. Chiu, S. C. Yang, and Y. J. Chan, “AlGaAs/InGaAs heterostructure doped-channel FET’s exhibiting good electrical performance at high temperatures,” IEEE Electron Device Lett., vol. 48, p. 2210, 2001.

    [47] W. C. Hsu, and H. M. Shieh, “A �-doped GaAs/In0.34Ga0.67As/GaAs high electron mobility transistor prepared by low-pressure metalorganic chemical vapor deposition,” Solid State Electron., vol. 35, p. 635, 1992.

    [48] C. L. Wu, W. C. Hsu, H. M. Shieh, and M. S. Tsai, “An improved inverted delta-doped GaAs/InGaAs pseudomorphic heterostructure grown by MOCVD,” IEEE Electron Device Lett., vol. 15, p. 330, 1994.

    [49] C. L. Wu, and W. C. Hsu, "Enhanced resonant tunneling real-space transfer in �-doped GaAs/InGaAs gated dual-channel transistors grown by MOCVD," IEEE Trans. Electron Devices, vol. 43, p. 207, 1996.

    [50] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, "High breakdown voltage symmetric double �-doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor," Appl. Phys. Lett., vol. 75, p. 1616, 1999.

    [51] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High Breakdown Characteristic �-doped InGaP/InGaAs/AlGaAs Tunneling Real Space Transfer HEMT,” IEEE Trans. Electron Devices, vol. 49, p. 221, 2002.

    [52] E. F. Schubert, J. E. Cunningham, W. T. Rsang, “Electron-mobility enhancement and electron-concentration enhancement in delta-doped n-GaAs at T = 300K,” Solid State Commun., vol. 63, p. 591, 1987.

    [53] G. Gillman, B. Vinter, E. Barbier, and A. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, p. 972, 1988.

    [54] T. Makimoto, N. Kobayashi, and Y. Horikoshi, “Electron conduction in GaAs atomic layer doped with Si,” J. Appl. Phys., vol. 63, p. 5023, 1988.

    [55] P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-Band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.

    [56] P. Ho, M. Y. Kao, P. C. Chao, K. H. G. Duh, J. M. Ballingal, S. T. Allen, A. J. Tessmer, and P. M. Smith, “Extremely high gain 0.15 �m gate-length InAlAs/InGaAs HEMT’s,” Electron. Lett., vol. 27, p. 325, 1991.

    [57] K. B. Chough, T. Y. Chang, M. D. Feuer, N. J. Sauer, and B. Lalevic, “High-performance highly strained Ga0.23In0.77As/Al0.48In0.52 As MODFET's obtained by selective and shallow etch guide recess techniques,” IEEE Electron Device Lett., vol. 13, p. 451, 1992.

    [58] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, p. 2007, 1992.

    [59] P. M. Smith, S. –M. J. Liu, M. –Y. Kao, P. Ho, S. C. Wang, K. H. G. Duh, S. T. Fu, and P. C. Chao, “W-band high efficiency InP-based power HEMT with 600 GHz fmax,” IEEE Microwave and Guided Wave Lett., vol. 5, p. 230, 1995.

    [60] K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMTs using nonalloyed ohmic contacts and Pt-buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, p. 252, 1996.

    [61] A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 �m gate length enhancement-mode AlInAs/InGaAs/InP high-electron mobility transistor,” IEEE Electron Device Lett., vol. 18, p. 284, 1997.

    [62] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C. Streit, “A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave Guide. Wave Lett., vol. 8, p. 399, 1998.

    [63] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, “Strain relaxation of compositionally graded InxGa1–xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, p. 1129, 1992.

    [64] A. Bosacchi, A. C. De Riccardis, P. Frigeri, S. Franchi, C. Ferrari, S. Gennari, L. Lazzarini, L. Nasi, G. Salviati, A. V. Drigo, and F. Romanato, “Continuously graded buffers for InGaAs/GaAs structures grown on GaAs,” J. Crystal Growth, vol. 175/176, p. 1009, 1997.

    [65] K. L. Kavanagh, J. C. P. Chang, J. Chen, J. M. Fernandez, and H. H. Wieder, “Lattice tilt and dislocations in compositionally step-graded buffer layers for mismatched InGaAs/GaAs heterointerfaces,” J. Vac. Sci. Technol. B, vol. 10, p. 1820, 1992.

    [66] P. Win, Y. Druelle, P. Legry, S. Lepilliet, A. Cappy, Y. Cordier, and J. Favre, “Microwave performance of 0.4 �m gate metamorphic In0.29Ga0.71As/In0.3Al0.7As HEMT on GaAs substrate,” Electron. Lett., vol. 29, p. 169, 1993.

    [67] P. Win, Y. Druelle, Y. Cordier, D. Adam, J. Favre, and A. Cappy, “High-performance In0.3Ga0.7As/In0.29Al0.71As/GaAs metamorphic high-electron-mobility transistor,” Jpn. J. Appl. Phys., vol. 33, p. 3343, 1994.

    [68] J. –I. Chyi, J. -L. Shieh, J. –W. Pan, and R. –M. Lin, “Material properties of compositional graded InxGa1-xAs and InxAl1-xAs epilayers grown on GaAs substrates” J. Appl. Phys., vol. 79, p. 8367, 1996.

    [69] D. L .Edgar, N. I. Cameron, H. McLelland, M. C. Holland, M. R. S. Taylor, I. G. Thayne, C. R. Stanley, and S. P. Beaumont, “Metamorphic GaAs HEMTs with fT of 200GHz,” Electron. Lett., vol. 35, p. 1114, 1999.

    [70] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Bohm, G. Trankle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrate with a novel composite channels design,” IEEE Electron Device Lett., vol. 17, p. 273, 1996.

    [71] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, p. 345, 1998.

    [72] J. H. Kim, H. S. Yoon, J, H, Lee, W. J. Chang, J. Y. Shim, K. H. Lee, and J. I, Song, “Low-frequency noise characteristics of metamorphic In0.52Al0.48As/In0.60Ga0.40As double-heterostructure pseudomorphic high electron mobility transistors grown on a GaAs substrate,” Solid-State Electron., vol. 46, p. 69, 2002.

    [73] Y. Zeng, X. Cao, L. Cui, M. Kong, L. Pan, B. Wang, and Z. Zhu, “High-quality metamorphic HEMT grown on GaAs substrates by MBE,” J. Cryst. Growth, vol. 227-228, p. 210, 2001.

    [74] C. Gaquiere, S. Bollaert, M. Zaknoune, Y. Cordier, D. Theron, and Y. Crosnier, “Influence on power performances at 60 GHz on indium composition in metamorphic HEMTs,” Electron. Lett., vol. 35, p. 1489, 1999.

    [75] D. C. Dumka, H. Q. Tserng, M. Y. Kao, E. A. Beam, and P. Saunier, “High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE Electron Device Lett., vol. 24, p. 135, 2003.

    [76] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,” IEEE Microwave and Guide Wave Lett., vol. 7, p. 6, 1997.

    [77] S. M. Wang, C. Karlsson, N. Rorsman, M. Bergh, E. Olsson, T. G. Andersson, and H. Zirath, “Molecular beam epitaxy growth and characterization of InxGa1-xAs (0.57 �T x �T 1) on GaAs using InAlAs graded buffer,” J. Cryst. Growth, vol. 175/176, p. 1016, 1997.

    [78] M. Zaknoune, Y. Cordier, S. Bollaert, D. Ferre, D. Theron, and Y. Crosnier, “0.1 �m high performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMT on GaAs using inverse step InAlAs buffer,” Electron. Lett., vol. 35, p. 1670, 1999.

    [79] M. Boudrissa, E. Delos, Y. Cordier, D. Theron,, and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, p. 512, 2000.

    [80] K. Eisenbeiser, R. Droopad, and J. H. Huang, “Metamorphic InAlAs/InGaAs enhancement mode HEMT’s on a GaAs substrates,” IEEE Electron Device Lett., vol. 20, p. 507, 1999.

    [81] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, and J. C. D. Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT: modeling and measurements,” IEEE Trans. Electron Devices, vol. 48, p. 1037, 2001.

    [82] S. Bollaert, Y. Cordier, M. Zaknoune, T. Parenty, H. Happy, S. Lepilliet, and A. Cappy, “fmax of 490 GHz metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate,” Electron. Lett., vol. 38, p. 389, 2002.

    [83] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and C. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMT’s on GaAs substrate,” IEEE Electron Device Lett., vol. 20, p. 123, 1999.

    [84] Y. Cordier, M. Zaknoune, S. Bollaert, and A. Cappy, “Charge control and electron transport properties in InyAl1-yAs/InxGa1-xAs metamorphic HEMTs: effect of indium content,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 102, 2000.

    [85] Y.Cordier, and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth, vol. 201/202, p. 263, 1999.

    [86] S. I. Gozu, K. Tsuboki, M. Hayashi, C. Hong, and S. Yamada, “Very high electron mobilities at low temperatures in InxGa1-xAs/InyAl1-yAs HEMTs grown lattice-mismatched on a GaAs substrates,” J. Cryst. Growth, vol. 201/202, p. 749, 1999.

    [87] N. Rorsman, C. Karlsson, S. M. Wang, H. Zirath, and T. G. Andersson, “DC and RF performance of 0.15 �m gate length In0.70Al0.30As/In0.80Ga0.20As HFETs on GaAs substrate,” Electron. Lett., vol. 31, p. 1114, 1995.

    [88] C. S. Whelan, P. F. Marsh, W. E. Woke, R. A. McTaggart, P. S. Lyman, P. J. Lemonias, S. M. Lardizabal, R. E. Leoni III, S. J. Lichwala, and T. E. Kazior, “Millimeter-wave low-noise and high-power metamorphic HEMT amplififer and devices on GaAs substrate,” IEEE J. Solid-State Circuits, vol. 35, p. 1307, 2000.

    [89] W. E. Woke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1-xAs/InxGa1-xAs high electron mobility transistor material and devices with x = 0.3-0.4,” J. Vac. Sci. Tech. B, vol. 18, p. 1638, 2000.

    [90] W. E. Woke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. McTaggart, S. M. Lardizabal, and K. Hetzler, “Molecular beam epitaxial growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrates,” J. Vac. Sci. Tech. B, vol. 17, p. 1131, 1999.

    [91] C. S. Whelan, W. E. Woke, R. A. McTaggart, S. M. Lardizabal, P. S. Lyman, P. F. Marsh, and T. E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Lett., vol. 21, p. 5, 2000.

    [92] D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, and I. Adesida, “Metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate with fT over 200GHz,” Electron. Lett., vol. 35, p. 1854, 1999.

    [93] M. Haupt, K. Kohler, P. Ganser, S. Muller, and W. Rothemund, “Molecular beam epitaxy of Al0.48In0.52As/Ga0.47In0.53As heterostructures on metamorphic AlxGayIn1−x−yAs buffer layers,” J. Crystal. Growth, vol. 175/176, p.1028, 1997.

    [94] E. Towe, D. Sun, and B. R. Bennet, “Growth of the (In,Al,Ga)As quaternary alloy system on GaAs at low substrate temperatures by molecular-beam epitaxy,” J. Vac. Sci. Tech. B, vol. 12, p. 1099, 1994.

    [95] K. C. Hwang, P. C. Chao, C. Creamer, K. B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, and G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT’s,” IEEE Electron Device Lett., vol. 20, p. 551, 1999.

    [96] D. –W. Tu, S. Wang, J. S. M. Liu, K. C. Hwang, W. Kong, P. C. Chao, and K. Nichols, “High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE Microwave and Guide Wave Lett., vol. 9, p. 458, 1999.

    [97] M. Behet, K. Eanden, and G. Borghs, and A. Behres, “Metamorphic InGaAs/InAlAs quantum well structures grown on a GaAs substrates for high electron mobility transistor applications,” Applied Physics Lett., vol. 73, p. 2760, 1998.

    [98] S. M. Wang, C. Karlsson, N. Rorsman, M. Bergh, E. Olsson, T. G. Andersson, and H. Zirath, “Molecular beam epitaxy growth and characterization of InxGa1-xAs (0.57 �T x �T 1) on GaAs using InAlAs graded buffer,” J. Cryst. Growth, vol. 175/176, p. 1016, 1997.

    [99] K. K. Lee, T. Brown, G. Dagnall, R. Bicknell-Tassius, A. Brown, G. S. May, “Using neural networks to construct models of the molecular beam epitaxy process,” IEEE Trans. Semi. Manufac., vol. 13, p. 34, 2000.

    [100] P. H. Garrett, J. J. Heyob, V. J. Hunt, S. R. LeClair, O. D. Patterson, “Decoupled flux control for molecular beam epitaxy,” IEEE Trans. Semi. Manufac., vol. 6, p. 348, 1993.

    [101] S. M. Bedair, “Device Structures Based on GaAsP/InGaAs Strained Layer Superlattice and Their Stability,” Crystal Properties & Preparation, vol. 21, p. 119, 1989.

    [102] D. K. Schroder, Semiconductor Material and Device Characterization. (John Wiley & Sons, New York, 1990).

    [103] F. F. Fang, T. P. Smith III, and S. L. Wright, “Landau-level broadening and scattering time in modulation doped GaAs/AlGaAs heterostructures,” Surf. Sci., vol. 196, p. 310, 1988.

    [104] D. Look, Electrical Characterization of GaAs Materials and Devices. (Wiley, New York, 1989).

    [105] R. Lee, G. Trombley, B. Johnson, R. Reston, M. Mah, C. Havasy, and C. Ito, “High temperature characteristics of GaAs MESFET devices fabricated with AlAs buffer layer,” IEEE Electron Device Lett., vol. 16, p. 265, 1995.

    [106] R. Narasimhan, L. P. Sadwick, and Ruey J. Hwu, “Enhancement of high-temperature high-frequency performance of GaAs-based FETs by the high-temperature electronic technique,” IEEE Trans. Electron Devices, vol. 46, p. 24, 1999.

    [107] Y. J. Li, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic double heterojunction modulation doped field-effect transistor with a GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, p. 760, 2003.

    [108] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys. Lett., vol. 38, p. L1385, 1999.

    [109] H. Y. Soon, J. H. Lee, J. Y. Shim, J. Y. Hong, D. M. Kang, W. J. Chang, H. C. Kim, and K. I. Cho, “0.15 �m gate length InAlAs/InGaAs power metamorphic HEMT on GaAs substrate with extremely low noise characteristics,” 2003 International Conference on Indium Phosphide and Related Materials, p. 114, 2003.

    [110] C. Karlsson, N. Rorsman, S. Wang, and M. Persson, “Metamorphic HFETs with composition In0.8Ga0.2As/InAs/In0.8Ga0.2As channel on GaAs substrate,” 1997 IEEE International Symposium on Compound Semiconductors, California, p. 483, 1997.

    [111] D. C. Streit, K. L. Tan, R. M. Dia, A. C. Han, P. H. Liu, H. C. Yen, and P. D. Chow, “High Performance W-band InAlAs-InGaAs-InP HEMTs,” Electronics Letters, vol. 27, p. 1149, 1991.

    [112] D. Theron, H. J. Bulmann, and M. Ilegems, “Pseudo Two-Dimensional Simulation of a Three Heterojunction GaAs/AlGaAs MODFET,” Solid-State Electron., vol. 33, p. 1607, 1990.

    [113] J. Yoshida, “Classical versus Quantum Mechanical Calculation of the Electron Distribution at the n-AlGaAs/GaAs Heterointerfaces,” IEEE Trans. Electron Devices, vol. 33, p. 154, 1986.

    [114] H. K. Brown, A. G. Whittaker, and N. T. Rollins, “A Numerical Analysis of the Resonant States Quantum Well and Superlattice Devices,” Solid-State Electron., vol. 33, p. 333, 1990.

    下載圖示 校內:立即公開
    校外:2004-07-15公開
    QR CODE